BU シリーズ CMOS カメラ

取扱説明書

適用機種

白黒カメラ : BU502MG/BU805MG/BU1208MG

カラーカメラ: BU502MCF/BU805MCF/BU1208MCF

この度は、弊社製品をお買い上げいただきまして、誠にありがとうござい ます。お求め頂いたCMOSカメラを安全に正しく使っていただくために、 ご使用になる前にこの『取扱説明書』をよくお読みください。 お読みになった後は、いつでも手元においてご使用ください。

東芝テリー株式会社

改善の為予告なく変更することがありますので、最新の仕様書・取扱説明書にて機能・性能をご確認ください。 本文中の規格名は、各社各団体における商標または登録商標の場合があります。

もくじ

安全上	Dご注意 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
围	及全般について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	٠З
乒	青事項 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 5
用	金制限・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 6
伎	月上のお願い ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 7
インス	トール ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
什样		12
加工	π	10
11み 七三	***************************************	12
行	\times	11
「日」	ス。 赤例	15
-		16
— 办	トノノレノは回日 21日暮 - ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
ノー		18
 		21
L/		22
// 人	//山/2回してはる	26
Н	- ヘンノロ1% 長めた池島蔵を特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\frac{20}{28}$
信		20
はあた	пжихтт	20
饿肥		31
B	otstrap Registers	33
Ľ		35
In	ageFormatControl	36
S	alable · · · · · · · · · · · · · · · · · · ·	40
B	ining	45
Ľ	cimation	49
H		53
Р	el-ormat	56
	stPattern	62
Д	quisitionControl	66
In		12
		()
E		87
Ľ	italloControl	90
<u>А</u>	tiGlitch/AntiChattering	101
	nerControl	105
G	in · · · · · · · · · · · · · · · · · · ·	110
B		113
G	mma · · · · · · · · · · · · · · · · · ·	115
B		11/
L	I Control	122
Ľ	erSetControl	125
E	entControl	130
F		133
L	DindicatorLuminance	135
D	CControl · · · · · · · · · · · · · · · · · · ·	137
C	unk	140
S	quentialShutterControl · · · · · · · · · · · · · · · · · · ·	146
付録		51
Ĺ	erSetSaveとUserSetQuickSaveの違い	151
Ň	iltiFrameとBulkモード動作の違い	153
保証期		56
小山の		50
1珍埕		01

ご使用の前に、この安全上のご注意をよくお読みのうえ、正しくお使いください。この取扱説明書には、 お使いになるかたや他の人への危害と財産の損害を未然に防ぎ、安全に正しくお使いいただくために、重要 な内容を記載しています。

次の内容(表示・図記号)を良く理解してから本文をお読みになり、記載事項をお守りください。

[表示の説明]

表示	表示の意味
▲ 警告	"取扱いを誤った場合、使用者が死亡または重傷(*1)を負うことが想定されること"を示します。
⚠ 注意	"取扱いを誤った場合、使用者が傷害(*2)を負うことが想定されるか、または物 的損害(*3)の発生が想定されること"を示します。

*1:重傷とは、失明やけが、やけど(高温・低温)、感電、骨折、中毒などで、後遺症が残る もの、および治療に入院・長期の通院を要するものをさします。

*2:傷害とは、治療に入院や長期の通院を要さない、けが・やけど・感電などをさす。

*3:物的損害とは、家屋・財産・および家畜・ペット等にかかわる拡大損害をさす。

[図記号の説明]

図記号	図記号の意味	
♦禁止	禁止 (してはいけないこと)を示します。 具体的な禁止内容は、図記号の中や近くに絵や文章で示しています。	
し指示	指示する行為の強制 (必ずすること)を示します。 具体的な指示内容は、図記号の中や近くに絵や文章で示しています。	

取扱全般について

	⚠ 注 意
日 指示	 ● 設置の際は次のことを守ること ・布などで包まない ・熱のこもりやすい狭い場所に押し込まない 内部に熱がこもり、火災の原因となることがあります。
いた	● 湿気・油煙・湯気・ほこりの多い場所に置かないこと 火災・感電の原因となることがあります。
	● 直射日光の当たる場所や温度の高い場所に置かないこと 内部の温度が上がり、火災の原因となることがあります。
日前	● 指定された電源ケーブル・接続ケーブルを使用すること ケーブルを傷めたり、断線の原因となります。
いたまで	● 接続ケーブルを強く引っ張ったり回したりしないでください 故障の原因となることがあります。
日 指示	● 接続の際は電源を切る 電源ケーブルや接続ケーブルを接続するときは、電源を切ってください。 感電や故障の原因となることがあります。
	● 過大な光(太陽光等)に長時間さらさないこと 故障の原因となることがあります。
	● 信号の出力は短絡しないこと 故障の原因となることがあります。
いた	 カメラ本体に強い衝撃を与えないこと 故障・破損の原因となることがあります。 コネクタ部に強い衝撃が加わるシステムで使用された場合、コネクタが破損する場合があります。その様なシステムで使用される場合、ケーブルをなるべくカメラ本体に近い所で束線し、コネクタに衝撃がつたわらないようにしてください。
日前	● 定期的(おおむね5年に1度)に点検・清掃を販売店にご依頼ください 内部にほこりがたまると、火災・故障の原因となることがあります。 点検・清掃費用については販売店にお尋ねください。

免責事項

- 地震、雷などの自然災害、火災、第三者による行為、その他事故、お客様の故意または過失、誤用、その 他異常な条件下での使用によって生じた損害に関して、弊社は一切責任を負いません。
- ●本製品の使用または使用不能から生じる付随的な損害(事業利益の損失・事業の中断・記憶内容の変化・消失など)に関して、弊社は一切責任を負いません。
- 仕様書や取扱説明書の記載内容を守らないことによって生じた損害に関して、弊社は一切責任を負いません。
- 仕様書や取扱説明書に記載されている以外の操作方法によって生じた損害に関して、弊社は一切責任を負いません。
- ●弊社が関与しない接続機器(USB インターフェースボード、レンズ含む)、ソフトウェア等との意図しない 組み合わせによる誤動作等から生じた損害に関して、弊社は一切責任を負いません。
- お客様ご自身又は権限のない第三者(指定外のサービス店等)が修理・改造を行った場合に生じた損害に関して、弊社は一切責任を負いません。
- 本製品に関し、いかなる場合も弊社の費用負担は本製品の個品価格以内とします。
- 本製品の仕様書に記載のない項目につきましては、保証対象外とします。
- ケーブルの取り付けミスによるカメラ破損に関しては、保証の対象外とさせていただきます。

用途制限

- 次に示すような条件や環境で使用する場合は、安全対策への配慮を頂くとともに、弊社にご連絡くださるようお願い致します。
 - 1. 明記されている仕様以外の条件や環境、屋外での使用。
 - 2. 人や財産に大きな影響が予想され、特に安全が要求される用途への使用。
- ●本製品は、使用される条件が多様なため、その装置・機器への適合性の決定は装置・機器の設計者または 仕様を決定する人が、必要に応じて分析やテストを行ってから決定してください。この装置・機器の性能 および安全性は、装置・機器への適合性を決定されたお客様において保証してください。
- ●本製品は、人の生命に直接関わる装置(*1)や人の安全に関与し公共の機能維持に重大な影響を及ぼす装置 (*2)などの制御に使用するよう設計・製造されたものではないため、それらの用途に使用しないでください。
 - (*1):人の生命に直接関わる装置とは、次のものをさします。
 - ・生命維持装置や手術室用機器などの医療機器
 - ・ 有毒ガスなどの排ガス、排煙装置
 - ・消防法、建築基準法などの各種法令により設置が義務づけられている装置
 - ・上記に準ずる装置
 - (*2):人の安全に関与し公共の機能維持に重大な影響を及ぼす装置とは、次のものをさします。
 - ・航空、鉄道、道路、海運などの交通管制装置
 - ・原子力発電所などの装置
 - ・上記に準ずる装置

使用上のお願い

● 取り扱いはていねいに

落下させたり強い衝撃や振動を与えたりしないでください。故障の原因になります。また、接続ケーブル は乱暴に取り扱わないでください。ケーブル断線の恐れがあります。

● 使用温度·湿度

仕様を超える温度・湿度の場所では使用しないでください。

画質の低下の他、内部の部品に悪影響を与えます。直射日光の当たる所でのご使用には特にご注意ください。また、高温時での撮影では被写体やカメラの状態(ゲインを上げている場合等)によっては縦スジや白点 状のノイズが発生することがありますが、故障ではありません。

● 組み合わせレンズについて

ご使用になられるレンズ及び照明の組み合わせによっては、撮像エリアにゴーストとして映り込む場合が ありますが、本製品の故障ではありません。また、レンズによっては周辺部の解像度及び明るさの低下、収 差等、カメラの性能を充分に発揮できないことがあります。ご使用になられるレンズ及び照明で、本製品と の組み合わせ確認を行って頂けるようお願い致します。

カメラにレンズ等を取付けるときは、傾きがないよう良く確かめてから取付けてください。またマウントのネジ部にキズやゴミ等がない物をご使用ください。カメラが外れなくなる場合があります。

本製品と組み合せて使用するレンズは、レンズが取り付かない場合がありますので座面からの突出寸法が 9mm以下のCマウントレンズを使用してください。

● カメラの取り付けについて

本製品を台座等に取り付ける場合には、レンズと台座等が接触しないよう、お客様にて十分配慮した取り付けをお願い致します。

- 撮像面を直接太陽や、強烈なライトなどに向けない CMOS センサが熱的に損傷することがあります。
- モアレの発生

細かい縞模様を撮ると実際にはない縞模様(モアレ)が干渉ジマとして現れることがありますが、故障では ありません。

● 画面ノイズの発生

カメラの設置ケーブル類の配線に際し、強い磁気を発するものの近くや、強力な電波を発するものの近く にあると、画面ノイズが入ることがあります。そのときは位置や配線を変えてください。

● 保護キャップの取り扱い カメラをご使用にならない時は、撮像面の保護のためレンズキャップを取り付けてください。

● 長時間ご使用にならないとき
 安全のため電源の供給を停止しておいてください。

● お手入れ

電源を切って乾いた布で拭いてください。

汚れのひどい場合には、うすめた中性洗剤を柔らかい布に染み込ませて軽く拭いてください。アルコール、 ベンジン、シンナーなどは使用しないでください。塗装や表示がはげたり、変質したりすることがあります。 万一撮像面にゴミ・汚れ・キズなどがついた場合には、販売店にご相談ください。

● 破棄をするとき

本製品は、環境汚染を防止する為、各国の法律や地方自治体の法令などに従い、適切な分別破棄をしてください。

「このシンボルはEU加盟国にのみ適用されます」 "This symbol is applicable for EU member states only"

本製品は、FCC規則第15条クラスAの制限にしたがって試験されたデジタル機器です。この制限 は工業的環境で製品が運用された時の有害な妨害から適度な保護をする為に設定されました。この製 品を使い、発生したラジオ周波数のエネルギー放射は、取扱説明書と違う設置や使い方によってラジ オコミュニケーションに有害な妨害を与える場合があります。この製品を住宅で取り扱う事は、妨害 の原因となる事が十分に考えられ、自身の責任で妨害を矯正する事が必須となります。 [CMOS センサ特有の現象]

■欠陥画素

CMOS イメージセンサはフォトセンサ素子が縦・横に並んで配置されており、フォトセンサ素 子のいずれかに欠陥があると、その部分の画像が映らず、モニタ画面上に於いて白又は黒のキ ズが発生します。キズの数量及び明るさは定温状態に比べ高温状態に於いて増加します。また、 露光時間が短い時に比べ露光時間が長い場合に於いて増加します。

この時キズがノイズ状に見える場合がありますが、CMOS イメージセンサの特性であり故障で はありませんのでご注意ください。

	环保使用期限标识,是根据电子信息产品污染控制管理办法以及,电子
	信息产品污染控制标识要求(SJ/T11364-2014)、电子信息产品环保使用
	期限通则,制定的适用于中国境内销售的电子信息产品的标识。
	电子信息产品只要按照安全及使用说明内容,正常使用情况下,从生产
	月期算起,在此期限内,产品中含有的有毒有害物质不致发生外泄或突
	变,不致对环境造成严重污染或对其人身、财产造成严重损害。
	产品正常使用后,要废弃在环保使用年限内或者刚到年限的产品时,请
中化人民共和国	根据国家标准采取适当的方法进行处置。
中华入氏共和国 环促庙田期限	另外,此期限不同于质量/功能的保证期限。
The CALL AND THE	The Mark and Information are applicable for People's Republic of
	China only

<产品中有毒有害物质或元素的名称及含量>

	有毒有害物质或元素					
部件名称	铅(Pb)	汞 (Hg)	镉(Cd)	六价铬	多溴联苯	多溴二苯醚
				(Cr(VI))	(PBB)	(PBDE)
相机本体	Х	0	0	0	0	0
本表格依据SJ/T 11364的规定编制						
O: 表示该有毒有害物质在该部件所有均质材料中的含量均在电子信息产品中有毒有害物质的						

限量要求标准规定的限量要求(GB/T26572)以下 ×:表示该有毒有害物质至少在该部件的某一均质材料中的含量超出电子信息产品中有毒有害 物质的限量要求标准规定的限量要求(GB/T26572)

This information is applicable for People's Republic of China only.

リサイクルに関する情報(包装物) 有关再利用的信息(包装物) Information on recycling of wrapping composition 内部緩衝材料・袋 内部缓神材料・袋 Internal buffer materials・Bag 箱/箱子/Box 内部緩衝材料・袋 内部缓神材料・袋 Internal buffer materials・Bag

 $10\ /\ 157$ Copyright © 2023 - 2024 Toshiba Teli Corporation, All rights reserved.

インストール

本カメラシリーズを使用するに当たり、画像表示用アプリケーション、カメラ制御用レジスタコントロー ラ等が必要となります。

弊社 USB I/F デジタルカメラシリーズを PC から制御するためのソフトウェア開発キット (TeliCamSDK)は、弊社ホームページからダウンロードすることができます。

ダウンロードサービスをご利用になるにはユーザー登録が必要となりますので、ユーザー登録をしていた だくか、弊社営業担当へお問い合わせください。

東芝テリー株式会社ホームページ

https://www.toshiba-teli.co.jp/

サービス&サポート

https://www.toshiba-teli.co.jp/cgi/ss/jp/service_j.cgi

TeliCamSDK の動作環境、インストール、セットアップについては、TeliCamSDK 付属のスタートアップガイドをご参照ください。

什樣

概要

BU502M/BU805M/BU1208M シリーズは、グローバルシャッタ方式を採用した一体型カメラです。 センサの種類により 5M (1/1.8 型)の BU502M、8M(2/3 型)の BU805M、12M (1/1.1 型)の BU1208M があります。カラーモデルは機種末尾に[CF]が付きます。映像出力・カメラ制御には USB3.2 Gen1 (USB3.0)規格を採用しており、高速で高解像度の画像処理に適しています。また、カメラ本体は、 小型・軽量で機器組み込みに最適です。

<u>特長</u>

- 高速フレームレート
 BU502Mでは 5M 画素 74 fps、BU805M では 8M 画素 46 fps、BU1208M では 12M 画素 30 fps
 の高速フレームレートを実現します。
- グローバルシャッタ

CCD イメージセンサと同様なグローバル電子シャッタの採用により、動きの速い被写体でもブレの少ない鮮明な画像を得られます。

● USB3.2 Gen1 (USB3.0) インターフェース
 映像出力及びカメラ制御は USB3.2 Gen1 (USB3.0、以降 USB3.2 Gen1) インターフェースを介して
 行います。データ転送を 5Gbps (最大) で行い、非圧縮の出力画像を高速フレームレートで出力可能です。

● USB3 Vision 採用 国際的工業用カメラ規格である USB3 Vision を採用しているため、カメラ制御を容易に行うことができ ます。

- GenlCam Ver.2.4, Ver.3.0 採用
 国際的工業用カメラ規格である GenlCam (Generic Interface for Cameras) Ver.2.4 及び Ver.3.0 を
 採用しているため、カメラ制御を容易に行うことができます。
- IIDC2 Digital Camera Control Specification Ver.1.1.0 採用 国際的工業用カメラ規格である IIDC2 Digital Camera Control Specification Ver.1.1.0 を採用してい るため、カメラ制御を容易に行うことができます。

● e-CON 規格コネクタ採用

センサーコネクタの業界標準である e-CON 規格コネクタの採用により、専用工具が不要となり、容易 にケーブルの製作ができます。

● ランダムトリガシャッタ機能

外部トリガ信号と同期して露光を開始するランダムトリガシャッタを装備していますので、高速移動物体 を定位置に捕らえ、正確な画像処理ができます。

● スケーラブル機能

映像出力範囲を任意に指定することができます。垂直方向の出力範囲を制限することにより、更なる高速 読み出しが可能になります。また水平方向の出力範囲を制限することにより、USB 転送線路の占有帯域を 軽減できます。

● ビニング

水平・垂直方向の画素情報を加算して読出すビニングに対応しています。

- デシメーション
 有効画素を間引いて読み出すことにより、フレームレートを上げることができます。
- 短時間露光モード
 短時間露光モードの設定を有しています。短時間露光モードの設定を有効にすることにより、
 1.02 µs~2.47 µs の高速露光時間設定が可能です。
- 防塵ガラス 標準で防塵ガラスが組み込まれています。 防塵ガラス組み込みモデルは機種名末尾に[G]が付きます。(例:BU502MG)
- IRカットフィルタ

カラーモデルは、IRカットフィルタ組み込みのオプションを選択することができます。 IRカットフィルタ組み込みモデルは機種名末尾に[F]が付きます。(例:BU5O2MCF) ※本仕様書内、共通仕様部に関しては、末尾の[F]は省略します。

● 小型、軽量

小型・軽量で耐振動、衝撃性に優れています。

構成

構成は以下のとおりになります。

本製品には付属品はございませんので、必要に応じてご用意ください。

● カメラ:

BU 本製品

● 三脚取付金具 CPTBU、CPTBUBG(※1): 三脚等を使用する場合、カメラの底面に取り付けます。

 ● USB3.2 Gen1 ケーブル(※2):
 カメラ背面の USB コネクタに接続します。Standard A - micro B の USB3.2 Gen1 ケーブルをご使用くだ さい。本製品はスクリューロック機構のある USB ケー ブルも接続可能ですので、必要に応じてご使用ください。

● USB3.2 Gen1 インターフェースカード(※2):カメラと接続するインターフェースカードです。通常 PC 等のホスト側の拡張スロットに挿入します。

● e-CON ケーブル(※2): 外部トリガ、GPIO 機能を使用する場合、カメラ背面の e-CON コネクタに接続します。 カメラの使用環境によっては、ノイズの影響を受ける可 能性があるため、シールドケーブルの使用を推奨致しま す。

※1 弊社オプション品。オプション品の詳細は、弊社営業担当にお問い合わせください。 ※2 市販品。

接続例

<u>お願い:接続について</u>

- I/O コネクタを抜き差しする際は、カメラの電源が OFF になっていることを確認してください。 故障の原因にな ります
- コネクタ部に強い衝撃が加わるシステムで使用される場合は、ロックネジ付きのUSBケーブルをご使用ください。
 また、ケーブルをなるべくカメラ本体に近いところで束線し、コネクタに衝撃が伝わらないようにしてください。
- カメラケーブルについて、電線の種類・長さによっては電圧降下により、カメラの電源電圧仕様を満たさない場合 がありますので、ご使用前に十分ご確認ください。
- ・使用する USB ケーブル、インターフェースカードについて、伝送路の電気的特性によりパケット落ちが発生する場合があります。

<u>コネクタピン配置</u> 2 - ・ (1) _{カメラ背面}

コネクタ型名 WMUR-10F6L1PH5N (WIN WIN PRECISION INDUSTRIAL 製) Pin No. I/O 信号名 機能 1 - VBUS Power 2 I/O D- USB2.0 differential pair 3 I/O D+ USB2.0 differential pair 4 - NC Not connected 5 - GND Ground for power return 6 O SSTX+ SuperSpeed transmitter differential pair 7 O SSTX+ SuperSpeed transmitter differential pair 9 I SSRX- SuperSpeed receiver differential pair 9 I SSRX- SuperSpeed receiver differential pair 10 I SSRX- SuperSpeed receiver differential pair 10 I SSRX+ SuperSpeed receiver differential pair 10 I SSRX+ SuperSpeed receiver differential pair 10 I SSR1+ SuperSpeed receiver differential pair 10 I SSR2+ SuperSpeed receiver differential pair 10	1 USB3.2 Gen	1 インターフ	エースコネクタ			
Pin No. I/O 信号名 機能 1 - VBUS Power 2 I/O D- USB2.0 differential pair 3 I/O D+ USB2.0 differential pair 4 - NC Not connected 5 - GND Ground for power return 6 O SSTX+ SuperSpeed transmitter differential pair 7 O SSTX+ SuperSpeed transmitter differential pair 8 - GND_DRAIN Ground for SuperSpeed signal return 9 I SSRX+ SuperSpeed receiver differential pair 10 I SSRX+ SuperSpeed receiver differential pair 21/O 3スクタ 37204-628-004PL (スリーエムジャパン製) Bit 37104 シリーズ (スリーエムジャパン製) 26コスクタビンマアリ e-CON 準拠コスクタ 例: 37104 シリーズ (スリーエムジャパン製) 8 コネクタビン配 Bit 37104 シリーズ (スリーエムジャパン製) 8 コネクタビン配 Bit 37104 シリーズ (スリーエムジャパン製) 1 TOP State 2 1 TOP 2 1	コネクタ型名		WMUR-10F6L1PH5	N(WIN WIN PRECISION INDUSTRIAL 製)		
1-VBUSPower21/0D-USB2.0 differential pair31/0D+USB2.0 differential pair4-NCNot connected5-GNDGround for power return60SSTX-SuperSpeed transmitter differential pair70SSTX+SuperSpeed signal return91SSRX-SuperSpeed receiver differential pair101SSRX+SuperSpeed receiver differential pair101SSRX+SuperSpeed receiver differential pair21/0 コネクタ37204-62B3-004PL (スリーエムジャバン製)適合コネクタ (ケーブル側e-CON 準拠コネクタ例:37104 シリーズ (スリーエムジャバン製) RITS 4P シリーズ (TE Connectivity 型) NITS 4P シリーズ (TE Connectivity 型)*< 本製品に適合コネクタは付属していません。 コネクタビン配列10110111ITOP3110111I/O12GPIO Input/Output2014114LineQ6GPIO Input	Pin No. I/O		信号名	機能		
2 I/OD-USB2.0 differential pair 3 I/OD+USB2.0 differential pair 4 -NCNot connected 5 -GNDGround for power return 6 0SSTX-SuperSpeed transmitter differential pair 7 0SSTX+SuperSpeed signal return 9 1SSRX-SuperSpeed receiver differential pair 9 1SSRX-SuperSpeed receiver differential pair 10 1SSRX+SuperSpeed receiver differential pair $2I/O$ 37204-62B3-004PL ($2IJ$ -T Δ $ / / / / / / $	1	-	VBUS	Power		
3 I/O D+ USB2.0 dilletential pair 4 - NC Not connected 5 - GND Ground for power return 6 0 SSTX- SuperSpeed transmitter differential pair 7 0 SSTX+ SuperSpeed transmitter differential pair 8 - GND_DRAIN Ground for SuperSpeed signal return 9 I SSRX- SuperSpeed receiver differential pair 20/0 コネクタ 37204-62B3-004PL (スリーエムジャバン製) afacaa 適合コネクタ (ケーブル側) e-CON 準拠コネクタ M: 37104 シリーズ (スリーエムジャバン製) 適合コネクタ (ケーブル側) e-CON 準拠コネクタ M: 37104 シリーズ (TE Connectivity 製) ※ 本製品に適合コネクタは付属していません。 コネクタセン配列 ① ① 1 TOP ③ ③ 1 TOP ③ ④ 1 I/O 信号名 2 0 Line1 GPIO Input/Output 2 0 Line1 GPIO Output 3 - GND Ground 4 I	2	I/O	D-			
4-NCNot connected5-GNDGround for power return60SSTX-SuperSpeed transmitter differential pair70SSTX+SuperSpeed signal return91SSRX-SuperSpeed receiver differential pair91SSRX-SuperSpeed receiver differential pair101SSRX+SuperSpeed receiver differential pair21/0 コネクタ37204-62B3-004PL (スリーエムジャパン製)適合コネクタ (ケーブル側)e-CON 準拠コネクタ例: 37104 シリーズ (スリーエムジャパン製)RITS 4P シリーズ (TE Connectivity 製)米本製品に適合コネクタは付属していません。コネクタビン配列①①②①③④1 TOP③2○Line2GNDGNDGNDGNDGNDGNDGPIO Input41Line0GPIO Input	3	I/O	D+	USB2.0 differential pair		
5-GNDGround for power return60SSTX-SuperSpeed transmitter differential pair70SSTX+SuperSpeed signal return91SSRX-SuperSpeed receiver differential pair101SSRX+SuperSpeed receiver differential pair2NO コネクタ37204-62B3-004PL (スリーエムジャパン製)適合コネクタ (ケーブル側)e-CON 準拠コネクタ 例:37104 シリーズ (スリーエムジャパン製) RITS 4P シリーズ (TE Connectivity 製)※ 本製品に適合コネクタは付属していません。 コネクタビン配列コネクタセン配列①1TOP③1I/O信号名機能1I/OLine2GNDGround41Line041	4	-	NC	Not connected		
6 O SSTX- SuperSpeed transmitter differential pair 7 O SSTX+ B SuperSpeed transmitter differential pair 8 - GND_DRAIN Ground for SuperSpeed signal return 9 I SSRX- 10 SuperSpeed receiver differential pair 10 I SSRX+ SuperSpeed receiver differential pair 21/0 コネクタ コネクタ型名 (カメラ側) 37204-62B3-004PL (スリーエムジャパン製) @合コネクタ (ケーブル側) e-CON 準拠コネクタ 例: 37104 シリーズ (スリーエムジャパン製) RITS 4P シリーズ (スリーエムジャパン製) RITS 4P シリーズ (TE Connectivity 製) * 本製品に適合コネクタは付属していません。 コネクタビン配列 ① ① 1 TOP ③ 1 TOP ③ 1 I/O 2 0 Line2 PIO No. I/O 信号名 1 I/O Line2 2 0 Line1 3 - GND 4 I Line0	5	-	GND	Ground for power return		
7 0 SSTX+ SuperSpeed transmitter differential pair 8 - GND_DRAIN Ground for SuperSpeed signal return 9 1 SSRX- SuperSpeed receiver differential pair 20/0 コネクタ コネクタゼ 37204-62B3-004PL (スリーエムジャパン製) 適合コネクタ (ケーブル側) e-CON 準拠コネクタ 例: 37104 シリーズ (スリーエムジャパン製) 服活 4P シリーズ (TE Connectivity 製) RITS 4P シリーズ (TE Connectivity 製) ※ 本製品に適合コネクタは付属していません。 コネクタゼン配列 ① 1 IOP ③ 4 I 1 I/O 信号名 2 0 Line1 3 - GND 4 I Line0	6	0	SSTX-			
8 - GND_DRAIN Ground for SuperSpeed signal return 9 I SSRX- SuperSpeed receiver differential pair 10 I SSRX+ SuperSpeed receiver differential pair 21/0 コネクタ 37204-62B3-004PL (スリーエムジャパン製) 適合コネクタ (ケーブル側) e-CON 準拠コネクタ 適合コネクタ (ケーブル側) e-CON 準拠コネクタ 例: 37104 シリーズ (スリーエムジャパン製) RTS 4P シリーズ (TE Connectivity 製) ※ 本製品に適合コネクタは付属していません。 コネクタビン配列 ① ① 1 TOP ③ 1 TOP ③ 4 1 GPIO Input/Output 2 0 Line2 GPIO Input/Output GPIO Output 3 3 - GND Ground Ground 4 1	7	0	SSTX+	SuperSpeed transmitter differential pair		
9 I SSRX- SuperSpeed receiver differential pair 10 I SSRX+ 2I/0 コネクタ SSRX+ SuperSpeed receiver differential pair 22/0 コネクタ オクタ型名 (カメラ側) 37204-62B3-004PL (スリーエムジャパン製) 適合コネクタ (ケーブル側) e-CON 準拠コネクタ 例: 37104 シリーズ (スリーエムジャパン製) RITS 4P シリーズ (TE Connectivity 製) RITS 4P シリーズ (TE Connectivity 製) ※ 本製品に適合コネクタは付属していません。 コネクタビン配列 1 TOP 3 1 4 1 4 1 4 1	8	-	GND_DRAIN	Ground for SuperSpeed signal return		
10 I SSRX+ SuperSpeed receiver differential pair ②I/O コネクタ コネクタ型名(カメラ側) 37204-62B3-004PL(スリーエムジャパン製) 適合コネクタ(ケーブル側) e-CON 準拠コネクタ 例:37104 シリーズ(スリーエムジャパン製) RITS 4P シリーズ(TE Connectivity 製) ※本製品に適合コネクタは付属していません。 コネクタピン配列 ① ① ② ↑ TOP ③ ④ ※ コネクタを嵌合側から見た図です。 Pin No. I/O 「100」 Line2 〇 Line1 GPIO Input/Output 3 - 4 I 4 I	9	I	SSRX-			
②I/O コネクタ コネクタ型名 (カメラ側) 37204-62B3-004PL (スリーエムジャパン製) 適合コネクタ (ケーブル側) e-CON 準拠コネクタ 例: 37104 シリーズ (スリーエムジャパン製) RITS 4P シリーズ (TE Connectivity 製) ※ 本製品に適合コネクタは付属していません。 コネクタビン配列 ① ② 1 TOP ③ ④ 1 I/O 信号名 1 I/O Line2 GND Ground 4 1 1 LineO GPIO Input	10	I	SSRX+	SuperSpeed receiver differential pair		
コネクタ型名(カメラ側) 37204-62B3-004PL(スリーエムジャパン製) 適合コネクタ(ケーブル側) e-CON 準拠コネクタ 例:37104 シリーズ(スリーエムジャパン製) RTS 4P シリーズ(TE Connectivity 製) RTS 4P シリーズ(TE Connectivity 製) ** 本製品に適合コネクタは付属していません。 コネクタビン配列 ① ② ① ② ① ③ ④ 1 TOP ③ 4 1 Line0 GPIO Input	<u>②I/Oコネクタ</u>					
適合コネクタ (ケーブル側) e-CON 準拠コネクタ 例: 37104 シリーズ (スリーエムジャパン製) RTS 4P シリーズ (TE Connectivity 製) ※ 本製品に適合コネクタは付属していません。 コネクタピン配列 ① ② ↑ ③ ④ * コネクタを嵌合側から見た図です。 Pin No. I/O 「1000 信号名 11000 CPIO Input/Output 2000 Line1 GPIO Output 3000 - GND 4 I Line0 GPIO Input	コネクタ型名 (カメラ側) 37204-62B3-004PL (スリーエムジャパン製)					
例:37104 シリーズ (スリーエムジャパン製) RTS 4P シリーズ (TE Connectivity 製) ※本製品に適合コネクタは付属していません。 コネクタピン配列 ① 1 ② 1 ③ 4 ※ コネクタを嵌合側から見た図です。 Pin No. I/O IO 信号名 役 1 1 I/O 1 I/O 日 CPIO Output 2 0 Line1 GPIO Output 3 - 4 I Line0 GPIO Input	適合コネクタ(ケーブル側) e-CON 準拠コネクタ					
RTS 4P シリーズ (TE Connectivity 製) ※ 本製品に適合コネクタは付属していません。 コネクタビン配列 ① ② ↑ TOP ③ ④ * コネクタを嵌合側から見た図です。 <u>Pin No. I/O 信号名 機能</u> 1 I/O Line2 GPIO Input/Output 2 O Line1 GPIO Output 3 - GND Ground 4 I LineO GPIO Input	例:37104シリーズ (スリーエムジャパン製)					
 ※本製品に適合コネクタは付属していません。 コネクタピン配列 ① 	RITS 4P シリーズ(TE Connectivity 製)					
□ スクタビン配列 ① ② ② ↑ TOP ③ ④ ※ □ネクタを嵌合側から見た図です。 Pin No. I/O 1 I/O 1 I/O 2 O 2 O 3 - GND GPIO Input 3 - 4 I	※ 本製品に適合コネクタは付属していません。					
① ① ↑ TOP ③ ④ * ※ コネクタを嵌合側から見た図です。 * Pin No. I/O 信号名 1 I/O Line2 2 O Line1 3 - GND 4 I Line0	コネクタビン配列					
 ② ④ ④ ※ コネクタを嵌合側から見た図です。 Pin No. I/O 信号名 機能 1 I/O Line2 GPIO Input/Output 2 O Line1 GPIO Output 3 - GND Ground 4 I LineO GPIO Input 						
③ ④ ※ コネクタを嵌合側から見た図です。 Pin No. I/O 信号名 機能 1 I/O Line2 GPIO Input/Output 2 O Line1 GPIO Output 3 - GND Ground 4 I Line0 GPIO Input						
(4) ※ コネクタを嵌合側から見た図です。 Pin No. I/O 信号名 機能 1 I/O Line2 GPIO Input/Output 2 O Line1 GPIO Output 3 - GND Ground 4 I LineO GPIO Input						
※ コネクタを嵌合側から見た図です。Pin No.I/O信号名機能1I/OLine2GPIO Input/Output2OLine1GPIO Output3-GNDGround4ILineOGPIO Input	(4)	(4)				
Pin No.I/O信号名機能1I/OLine2GPIO Input/Output2OLine1GPIO Output3-GNDGround4ILineOGPIO Input	※ コネクタを嵌合側から見た図です。					
1I/OLine2GPIO Input/Output20Line1GPIO Output3-GNDGround4ILine0GPIO Input	Pin No.	I/O	信号名	機能		
2OLine1GPIO Output3-GNDGround4ILineOGPIO Input	1 I/O Line2		Line2	GPIO Input/Output		
3-GNDGround4ILineOGPIO Input	2	0	Line1	GPIO Output		
4 I LineO GPIO Input	3	-	GND	Ground		
	4	I	LineO	GPIO Input		

外形仕様

仕様 主材質:アルミニウムダイカスト合金 処理:カチオン塗装(黒色)

主な仕様

● 白黒モデル

機種型名	BU502MG	BU805MG	BU1208MG	
光学部品	光学ガラス			
撮像素子		CMOS イメージセンサ		
出力最大画素数(H)×(V)	2448×2048	2848×2848	4096×3008	
光学サイズ	1/1.8 型相当	2/3 型相当	1/1.1 型相当	
撮像面積(H) x (V)[mm]	6.77×5.66	7.83×7.80	11.31×8.24	
画素サイズ(H) x (V)[μm]		2.74×2.74		
走查方式		プログレッシブ		
電子シャッタ方式		グローバルシャッタ		
アスペクト比	6:5	1:1	4:3	
感度	27101x, F5.6, 1/83.3s	34801x, F8, 1/52.6s	26001x, F8, 1/35.7s	
最低被写体照度(※1)	2lx	1lx	11x	
電源	DC+	5V±5% (USB コネクタより)	給電)	
消費電力(※2)	2.7 W 以下	2.7 W 以下	2.8 W 以下	
映像インターフェース方式	USB3.2	Gen1 (SuperSpeedのみち	ナポート)	
映像転送速度		5Gbps (最大)		
プロトコル		USB3 Vision		
映像出力フォーマット	Mono8, Mono10, Mono12			
最大フレームレート(※2)				
Mono8	74.9 fps	46.7 fps	30.7 fps	
(HighFrameRateMode=ON)	(75.6 fps)	(46.7 fps)	(30.7 fps)	
Mono10, Mono12	37.8 fps	23.3 fps	15.3 fps	
外形寸法	29mm(W) x	29mm(H) x 16mm(D) (突起	記物を含まず)	
質量		約 33g		
レンズマウント		Cマウント		
フランジバック	17.526mm			
フレーム接地 / 絶縁状況		回路 GND ~ 筐体間導通あり		

(※1) F1.4, ゲイン: 最大(+36dB), 映像レベル: 50%

(※2) 全画素読出し時

● Color モデル

機種型名	BU502MCF	BU805MCF	BU1208MCF	
光学部品	IRカットフィルタ			
撮像素子	CMOS イメージセンサ			
出力最大画素数(H)×(V)	2448×2048	2848×2848	4096×3008	
光学サイズ	1/1.8 型相当	2/3 型相当	1/1.1 型相当	
撮像面積(H) x (V)[mm]	6.77×5.66	7.83×7.80	11.31×8.24	
画素サイズ(H) x (V)[μm]		2.74×2.74		
走查方式		プログレッシブ		
電子シャッタ方式		グローバルシャッタ		
アスペクト比	6:5	1:1	4:3	
感度	23901x, F4, 1/83.3s	30001x, F5.6, 1/52.6s	23001x, F5.6, 1/35.7s	
最低被写体照度(※1)	Зlх	21x	2lx	
電源	DC+5V±5% (USB コネクタより給電)			
消費電力(※2)	2.7 W 以下	2.7 W 以下	2.8 W 以下	
映像インターフェース方式	USB3.2 Gen1 (SuperSpeed のみサポート)			
映像転送速度		5Gbps (最大)		
プロトコル	USB3 Vision			
映像出力フォーマット	Bayer8, Bayer10, Bayer12			
最大フレームレート(※2)				
Bayer8	74.9 fps	46.7 fps	30.7 fps	
(HighFrameRateMode=ON)	(75.6 fps)	(46.7 fps)	(30.7 fps)	
Bayer10, Bayer12	37.8 fps	23.3 fps	15.3 fps	
外形寸法	29mm(W) x 29mm(H) x 16mm(D) (突起物を含まず)			
質量	約 33g			
レンズマウント	C マウント			
フランジバック	17.526mm			
フレーム接地 / 絶縁状況	回路 GND ~ 筐体間導通あり			

(※1) F1.4, ゲイン: 最大(+36dB), 映像レベル: 50%

(※2) 全画素読出し時

お願い:組み合わせレンズについて

- ご使用になられるレンズ及び照明の組み合わせによっては、撮像エリアにゴーストとして映り込む場合がありますが、本製品の故障ではありません。また、レンズによっては周辺部の解像度及び明るさの低下、収差等、カメラの性能を充分に発揮できないことがあります。ご使用になられるレンズ及び照明で、本製品との組み合わせ確認を行って頂けるようお願い致します。
- ・カメラにレンズ等を取付けるときは、傾きがないよう良く確かめてから取付けてください。またマウントのネジ部 にキズやゴミ等がない物をご使用ください。カメラが外れなくなる場合があります。
- ・本製品と組み合せて使用するレンズは、レンズが取り付かない場合がありますので座面からの突出寸法が 9mm 以下の C マウントレンズを使用してください。

カメラの状態	LED 表示
電源供給なし	消灯
リンク検出中	緑の高速点滅(ON:20ms, OFF:60ms)
接続エラー	赤と緑が交互に点滅
SuperSpeed 接続確立。転送なし。	緑の中速点滅(ON:200ms, OFF:800ms)
SuperSpeed 接続確立。トリガ待ち。	橙の中速点滅(ON:200ms, OFF:800ms)
HighSpeed 接続確立。転送なし。	緑の低速点滅(ON:400ms, OFF:1600ms)
HighSpeed 接続確立。トリガ待ち。	橙の低速点滅(ON:400ms, OFF:1600ms)
データ転送中	緑の高速点灯(ON:60ms, OFF:20ms)
転送エラー	赤点灯(500ms 期間)
スタンバイ	橙の超低速点滅(ON:200ms, OFF:2800ms)

I/O 入出力信号仕様

- 信号仕様
 - LineO(I/Oコネクタ:4 ピン)
 入出力仕様 : 入力専用
 入力回路 : LVTTL入力
 信号レベル : Low O ~ 0.5V、High 2.0 ~ 24.0V
 動作エッジ極性 : 出荷設定 負極性(カメラ設定にて切り替え可能)
 パルス幅 : 最小 50 μs
 入力回路図

お願い:トリガ入力信号について

ケーブル長・線種、トリガライン入力電流値によっては、カメラ側にてトリガ信号を受けられない場合がありますので、 ご確認の上ご使用ください。

お願い:トリガ入力レベルについて

LineO と Line2 の最大入力信号レベルは異なります。本取扱説明書に記載の電圧より高いレベルの信号を入力すると故障の原因となりますので、十分ご確認の上ご使用ください。

● 外部トリガ入力回路例

Isolated I/F

Non-Isolated I/F

お願い:トリガ入力ケーブルについて

- ・トリガ信号の認識は、ケーブルの長さ、特性、または駆動電流によって異なります。 したがって、これらの条件に ついてはお客様のシステム全体で確認してください。
- カメラの I/O コネクタの 3 ピンは、カメラ筐体(フレーム)と導通しています。
 シールドケーブルを使用する場合、シールド編組はお客様自身のシステムフレーム GND に接続するか、システムシ グナル GND へ接続をお願い致します。
- ・EMC 適合性の確認は、最終的にお客様のシステム全体で実施をして頂くようお願致します。

 Line2 (I/O コネクタ: 	1ピン)
入出力仕様	:入力/出力(LineMode により切替え可能)
出荷設定	:出力

入力信号仕様

入力回路	:5V CMOS 入力
信号レベル	: Low 0 \sim 0.5V, High 4.0 \sim 5.0V
動作エッジ極性	:出荷設定 負極性(カメラ設定にて切り替え可能)
パルス幅	: 最小 50 µs

お願い:トリガ入力信号について

ケーブル長・線種、トリガライン入力電流値によっては、カメラ側にてトリガ信号を受けられない場合がありますので、 ご確認の上ご使用ください。

お願い:トリガ入力レベルについて

LineO と Line2 の最大入力信号レベルは異なります。本取扱説明書に記載の電圧より高いレベルの信号を入力すると故障の原因となりますので、十分ご確認の上ご使用ください。

出力信号仕様

信号レベル	: 5V CMOS				
最大電流	:+/-32mA(駆動電流)				
信号極性	:出荷設定 負極性(カメラ設定にて切り替え可能)				
出力信号(LineSource)	:以下から選択				
	Off* / UserOutput / TimerOActive / AcquisitionActive				
	FrameTriggerWait / FrameActive / FrameTransferActive				
	ExposureActive				

※LineMode が出力に設定されている場合でも、LineSource に Off を設定している場合は Line2 への入力信号は有効となります。

入出力回路図

•	Line1 (I/O コネクタ:2ピン)	
	入出力仕様	:出力専用
	信号レベル	: 5V CMOS
	最大電流	:+/-32mA(駆動電流)
	信号極性	:出荷設定 負極性(カメラ設定にて切り替え可能)
	出力信号(LineSource)	:以下から選択
		Off / UserOutput / TimerOActive / AcquisitionActive
		FrameTriggerWait / FrameActive / FrameTransferActive

ExposureActive

<u>タイミング仕様</u>

本製品は映像データの転送プロトコルに USB のバルク転送を使用しています。以降に想定されたタイミング数値は伝送帯域を他ノードの制約無しに使用できることが絶対条件です。本製品と同時に転送を行っているノードがある場合は以降で規定した数値どおりではありません。

● ノーマルシャッタ動作

全画素読み出し時

田口		T1	T2	T3	
空石	フォーマット	[ms]	[ms]	[s]	
	Mono8	13.0	13.2		
DUDUZINIG	Mono10, Mono12	15.5	26.4		
	Bayer8	13.0	13.2		
BUSUZIVICE	Bayer10, Bayer12	15.5	26.4		
BU805MG	Mono8	20.1	21.4		
	Mono10, Mono12	24.0	42.7	1/(フレームレート乳ウ店)	
	Bayer8	20.1	21.4		
BUOUDIVICE	Bayer10, Bayer12	24.0	42.7		
	Mono8	29.2	32.4		
DU 12001VIG	Mono10, Mono12	35.0	64.6		
	Bayer8	29.2	32.4		
DUIZUONUCT	Bayer10, Bayer12	35.0	64.6		

● ランダムトリガシャッタ動作

Edge モード/Bulk モード時(全画素読み出し)

Level モード時 (全画素読み出し)

型名	フォーマット	T4 [μs]	T5 [μs]
	Mono8	67.7	70.2
BUSU2IVIG	Mono10, Mono12	66.1	68.6
	Bayer8	67.7	70.2
BU202MCF	Bayer10, Bayer12	66.1	68.6
	Mono8	62.9	65.4
BOSOPINIC	Mono10, Mono12	74.7	77.2.
	Bayer8	62.9	65.4
BOSODIMCE	Bayer10, Bayer12	74.7	77.2
	Mono8	86.2	88.8
BU1208MG	Mono10, Mono12	102.8	105.2
	Bayer8	86.2	88.8
BU1208MCF	Bayer10, Bayer12	102.8	105.2

※ T2は、ノーマルシャッタ動作時と同じです。

※ T4、T5 は、Typical 値です。

お願い:ランダムトリガシャッタにおける注意点

- ・FRAME_TRIGGER_WAIT(GPIO 出力信号参照)が inactive の期間は、トリガ信号を入力しないでください。
- 入力されるトリガ信号の周期が極端に短い場合、トリガ信号にノイズがのっている場合に誤動作を起こす可能性があります。トリガ信号生成回路において十分な配慮をお願い致します。

代表的な波長感度特性

※ レンズ特性及び光源特性を除く

• BU502MG/BU805MG/BU1208MG

BU502MCF/BU805MCF/BU1208MCF

使用環境条件

● 温湿度条件

• 動作温度	
周囲温度	:0℃ ~ 40℃、但し 筐体表面温度 60℃以下
湿度	:10% ~ 90% (非結露)

•保存温湿度

温度	$:-20^\circ\mathrm{C}\sim60^\circ\mathrm{C}$
湿度	:90% 以下 (非結露)

お願い:筐体の放熱について

本製品の筐体表面温度は 60℃以下としてください。

カメラ筐体表面温度の上限および各機種の許容周囲温度については、当社ホームページの「熱設計マニュアル」をご参照ください。

お客様の設置状況に応じて放熱対策を実施して頂くようお願い致します。

- EMC 条件
 - ・EMI (電磁妨害) :EN61000-6-4

FCC Part 15 Subpart B Class A

• EMS (電磁感受性) : EN61000-6-2

機能

本カメラシリーズの主な機能について説明します。

BU502M/BU805M/BU1208M シリーズに実装されている機能は下記のとおりです。

カテゴリ	機	能
USB3Vision	Bootstrap Registers	USB3 Vision 規格レジスタ
DeviceControl	DeviceControl	デバイス情報
ImageFormatControl	ImageFormatSelector	イメージフォーマット選択
	Scalable	スケーラブル
	Binning	ビニング
	Decimation	デシメーション
	Reverse	映像反転
	PixelFormat	ピクセルフォーマット
	TestPattern	テストパターン
AcquisitionControl	AcquisitionControl	映像取得 / 停止
	ImageBuffer	イメージバッファ
	TriggerControl	トリガモード
	ExposureControl	露光制御
DigitallOControl	DigitallOControl	GPIO 制御
	AntiGlitch	アンチグリッチ
	AntiChattering	アンチチャタリング
CounterAndTimerControl	TimerControl	TimerOActive 信号制御
AnalogControl	Gain	ゲイン
	BlackLevel	黒レベル
	Gamma	ガンマ補正
	BalanceRatio	カラーゲイン(R, B Gain)
	BalanceWhiteAuto	ワンプッシュホワイトバランス
LUTControl	LUTControl	LUT 制御
UserSetControl	UserSetControl	ユーザー設定の Load / Save
EventControl	EventControl	イベントパケット制御
VenderUniqueControl	FrameSynchronization	フレーム同期制御
	LEDIndicatorLuminance	LED 輝度調整
DPCControl	DPCControl	画素欠陥補正
SequentialShutterControl	SequentialShutterControl	シーケンシャルシャッタ
ChunkDataContol	Chunk	Chunk データ

表 機能一覧

各機種で対応している機能は下記のとおりです。

機能	BU502MG	BU805MG	BU1208MG	BU502MCF	BU805MCF	BU1208MCF
Bootstrap Registers	0	0	0	0	0	0
DeviceControl	0	0	0	0	0	0
ImageFormatSelector	0	0	0	0	0	0
Scalable	0	0	0	0	0	0
Binning	0	0	0	0	0	0
Decimation	0	0	0	0	0	0
Reverse	0	0	0	0	0	0
PixelFormat	0	0	0	0	0	0
TestPattern	0	0	0	0	0	0
AcquisitionControl	0	0	0	0	0	0
ImageBuffer	0	0	0	0	0	0
TriggerControl	0	0	0	0	0	0
ExposureControl	0	0	0	0	0	0
DigitallOControl	0	0	0	0	0	0
AntiGlitch	0	0	0	0	0	0
AntiChattering	0	0	0	0	0	0
TimerControl	0	0	0	0	0	0
Gain	0	0	0	0	0	0
BlackLevel	0	0	0	0	0	0
Gamma	0	0	0	0	0	0
BalanceRatio	-	-	-	0	0	0
BalanceWhiteAuto	-	-	-	0	0	0
LUTControl	0	0	0	0	0	0
UserSetControl	0	0	0	0	0	0
EventControl	0	0	0	0	0	0
FrameSynchronization	0	0	0	0	0	0
LEDIndicatorLuminance	0	0	0	0	0	0
DPCControl	0	0	0	0	0	0
SequentialShutterControl	0	0	0	0	0	0
Chunk	0	0	0	0	0	0

以下、各機能をレジスタごとに説明します。

Bootstrap Registers

本カメラは USB3 Vision を採用しています。

Bootstrap Registers の詳細については、USB3 Vision の規格を参照してください。

A3 (Association for Advancing Automation) USB3 Vision $\pi - \Delta^{\mathcal{A}} - \check{\mathcal{Y}}$

http://www.visiononline.org/vision-standards-details.cfm?type=11

以下は、代表的なレジスタです。

- UserDefinedName

カメラ内の不揮発性メモリに任意の文字列を保存できます。

- StreamEnable

ストリームチャンネルのオープン/クローズを行います。 ストリームチャンネルのオープン/クローズの際は、StreamEnable レジスタ設定の他にアプリケーショ ン側で SDK のコントロールなどが必要になります。詳しくは、TeliCamSDK ライブラリマニュアルを 参照してください。

- EventEnable

イベント通知機能を有効にします。

イベントチャンネルのオープン/クローズの際は、アプリケーション側で SDK のコントロールなどが必要になります。詳しくは、TeliCamSDK ライブラリマニュアルを参照してください。

● 使用するレジスタ

USB3 Vision ABRM								
レジスタ名	Address	GenlCam Interface	Length Byte / [bit]	Access	説明			
ManufactureName	0x00004	String	64	R	ベンダー名を返します			
ModelName	0x00044	String	64	R	カメラモデル名を返します			
FamilyName	0x00084	String	64	R	カメラシリーズ名を返します			
DeviceVersion	0x000C4	String	64	R	デバイスバージョンを返します			
ManufacturerInfo	0x00104	String	64	R	カメラ情報を返します			
SerialNumber	0x00144	String	64	R	シリアル番号を返します			
UserDefinedName	0x00184	String	64	R/W	UserDefinedName を返します			
SBRM Address	0x001D8	Integer	8	R	SBRM の開始アドレスを返します			

USB3 Vision SBRM								
レジスタ名	Address	GenlCam Interface	Length Byte / [bit]	Access	説明			
SIRMAddress	0x10020	Integer	8	R	SIRM の開始アドレスを返します			
EIRMAddress	0x1002C	Integer	8	R	EIRM の開始アドレスを返します			
IIDC2Address	0x10038	Integer	8	R	IIDC2 の開始アドレスを返します			
CurrentSpeed	0x10040	Integer	[30]	R	[0]: Low-Speed 接続 (非対応)			
					[1]:Full-Speed 接続 (非対応)			
					[2]:High-Speed 接続			
					[3]: Super-Speed 接続			

USB3 Vision SIRM							
レジスタ名	Address	GenlCam Interface	Length Byte / [bit]	Access	説明		
StreamEnable	0x20004	Integer	[O]	R/W	O: 画像データの転送を無効にします		
					1: 画像データの転送を有効にします		
SIRequiredPayloadSize	0x20008	Integer	8	R	画像のペイロードサイズを返します。		
SIRequiredLeaderSize	0x20010	Integer	4	R	Leader の最小サイズを返します		
SIRequiredTrailerSize	0x20014	Integer	4	R	Trailer の最小サイズを返します		
SIMaximumLeaderSize	0x20018	Integer	4	R	Leader の最大サイズを返します		
SIPayloadTransferSize	0x2001C	Integer	4	R	1 パケットのペイロードサイズを返します		
SIPayloadTransferCount	0x20020	Integer	4	R	1 画像に対する必要パケット数を返します		
SIPayloadFinalTransfer1Size	0x20024	Integer	4	R	Final transfer1 のペイロードサイズを返します		
SIPayloadFinalTransfer2Size	0x20028	Integer	4	R	Final transfer2のペイロードサイズを返します		
SIMaximumTrailerSize	0x2002C	Integer	4	R	Trailer の最大サイズを返します		

USB3 Vision EIRM					
レジスタ名	Address	GenlCam Interface	Length Byte / [bit]	Access	説明
EventEnable	0x30000	Integer	[O]	R/W	O: イベント機能を無効にします
					1:イベント機能を有効にします

● 備考

BU シリーズは High-Speed 接続での画像転送には対応していません。

CurrentSpeed レジスタは、カメラが USB2.0 で接続されたことをアプリケーション上で判別するために使用します。

DeviceControl

本カテゴリのレジスタから各種デバイス情報を読むことができます。また任意のユーザーID の設定が可 能です。

● 使用するレジスタ

レジス夕名	Visibility	Access	説明
DeviceReset	Expert	W	カメラをリセットします。
DeviceVendorName	Beginner	R	ベンダー名を返します。
DeviceModelName	Beginner	R	モデル名を返します。
DeviceManufacturerInfo	Beginner	R	メーカー情報を返します。
DeviceVersion	Beginner	R	デバイスバージョンを返します。
DeviceID	Beginner	R	デバイス ID(製造番号)を返します。

● 備考

- DeviceReset

DeviceReset の実行によって USB バスのリセットを行います。

- プラグアンドプレイが発生し、アプリケーションで割り付けられているカメラハンドルは無効にします。
 - カメラのクローズとオープンが必要です。
ImageFormatControl

本カテゴリのレジスタから映像フォーマットに関する制御を行うことができます。

カメラには、3つのイメージフォーマットがあります。ImageFormatSelector レジスタによってイメージフォーマットを選択することができます。

	<u> </u>	ormat2	
	Format1	ſ	Width
FormatO		Width	Height
ImageSize) Width J Height	Height DffsetX	DffsetX DffsetY
IIIIageoize		DffsetY	rizontal
	Consert	rizontal	ertical
Binning	Horizontal	ertical	lorizontal
Binnin	gVertical	lorizontal IVertical seX	Vertical
Decimatio	onHorizontal		зeХ
Decimat	ionVertical		seY
Rev	/erseX	ъеY	rmat
Rev	/erseY	rmat	dian
Pixel Pixe	Format Endian	dian	

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
ImageFormatSelector	IEnumeration	4	R/W	映像フォーマットの切り替えを行います。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
ImageFormatSelector	Implemented	0x202020	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x20202C	16	R	[0] : FormatO
					[1] : Format1
					[2] : Format2
	Value	0x20203C	4	R/W	映像フォーマットの切り替えを行います。

ImageFormatSelector によって適用されるレジスタのリスト

ImageFormat 0 - 2
Width
Height
OffsetX
OffsetY
BinningHorizontal
BinningVertical
DecimationHorizontal
DecimationVertical
ReverseX
ReverseY
PixelFormat
PixelEndian

● TeliCamSDK 制御

Camera feature API

専用の API を使用して ImageFormat を制御します。

API 名	説明
GetCamImageFormatSelector	ImageFormatSelectorの値を取得します。
SetCamImageFormatSelector	ImageFormatSelector に値を設定します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GenICam API を使用して ImageFormat を制御します。

ImageFormat

ImageFormatSelector によって映像フォーマットを選択します。

設定値は Enumeration 型で下記のとおりです。

Integer	String
O (%)	FormatO
1	Format1
2	Format2
	\•<

※ 出荷設定

// GenlCam node handle CAM_NODE_HANDLE hSelector = NULL;

// Retrieve GenlCam node. Nd_GetNode(s_hCam, [~]ImageFormatSelector[~], &hSelector);

// ImageFormat = Format2 Nd_SetEnumStrValue(s_hCam, hSelector, "Format2");

詳細は[TeliCamAPI Library manual]の[INode functions], [IEnumeration node functions]を 参照してください。

Register access API

IIDC2 レジスタに直接アクセスして映像フォーマットを制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

ImageFormat

ImageFormatSelector レジスタの Value フィールドに書き込みます。

// ImageFormat = Format2 uint32_t uiSelector; uiSelector = 2; Cam_WriteReg(s_hCam, 0x20203C, 1, &uiSelector);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

● 備考

・映像ストリーム出力中は ImageFormatSelector レジスタ設定変更が無効となります。

<u>Scalable</u>

スケーラブル読み出しは、最大映像出力有効画素領域のうち任意の矩形領域のみを読み出し、出力する方法です。垂直方向(縦方向)の不要な領域を高速で読み飛ばすことでフレームレートを向上させることができます。

選択できる形状は連続したユニット単位の矩形形状のみで、凸や凹のような選択はできません。また選択 できるウィンド数は1個です。

・ウィンドのサイズ : {A + 4 x m(H)} × {B + 8 x n(V)}

※ A, Bはそれぞれの最小ユニットサイズ

※ m, n は整数、但しウィンドが最大ユニットサイズの全画面からはみ出さないこと。

・ウィンドの開始位置 :{4 x i(H)} × {8 x j(V)}

※ i, j は整数、但しウィンドが最大ユニットサイズの全画面からはみ出さないこと。

スケーラブル

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
Width	llnteger	4	R/W	映像の幅を設定します。
Height	llnteger	4	R/W	映像の高さを設定します。
OffsetX	llnteger	4	R/W	映像の水平方向開始位置を設定します。
OffsetY	lInteger	4	R/W	映像の垂直方向開始位置を設定します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
ImageSize	Implemented	0x202060	[31]	R	この機能が有効かどうかを返します。
	OffsetXMin	0x20206C	4	R	水平方向開始位置の最小値を返します。
	OffsetXInc	0x202070	4	R	水平方向開始位置の設定できる単位を返します。
	WidthMin	0x202074	4	R	幅の最小値を返します。
	WidthInc	0x202078	4	R	ユニットサイズの幅を返します。
	SensorWidth	0x20207C	4	R	センサの有効画素幅を返します。
	OffsetYMin	0x202080	4	R	垂直方向開始位置の最小値を返します。
	OffsetYInc	0x202084	4	R	垂直方向開始位置の設定できる単位を返します。
	HeightMin	0x202088	4	R	高さの最小値を返します。
	HeightInc	0x20208C	4	R	ユニットサイズの高さを返します。
	SensorHeight	0x202090	4	R	センサの有効画素高さを返します。
	OffsetX	0x202094	4	RW	映像の水平方向開始位置を設定します。
	Width	0x202098	4	RW	映像の幅を設定します。
	OffsetY	0x20209C	4	RW	映像の垂直方向開始位置を設定します。
	Height	0x2020A0	4	RW	映像の高さを設定します。

● TeliCamSDK 制御

Camera feature API

専用 API を使用してスケーラブルを制御します。

API名	説明
GetCamSensorWidth	センサの有効画素幅を取得します。
GetCamSensorHeight	センサの有効画素高さを取得します。
GetCamRoi	カメラの ROI を取得する。
SetCamRoi	カメラの ROI を設定します。
GetCamWidthMinMax	映像の幅の最小値と最大値を取得します。
GetCamWidth	映像の幅を取得します。
SetCamWidth	映像の幅を設定します。
GetCamHeightMinMax	映像の高さの最小値と最大値を取得します。
GetCamHeight	映像の高さを取得します。
SetCamHeight	映像の高さを設定します。
GetCamOffsetXMinMax	映像の水平開始位置の最小値と最大値を取得します。
GetCamOffsetX	映像の水平開始位置を取得する。
SetCamOffsetX	映像の水平開始位置を設定する。
GetCamOffsetYMinMax	映像の垂直開始位置の最小値と最大値を取得します。
GetCamOffsetY	映像の垂直開始位置を取得する。
SetCamOffsetY	映像の垂直開始位置を設定する。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenICam function API

GeniCam API を使用してスケーラブルを制御します。

♦Scalable

// GenlCam node handle CAM_NODE_HANDLE hWidth = NULL; CAM_NODE_HANDLE hHeight = NULL; hOffsetX = NULL; CAM_NODE_HANDLE CAM_NODE_HANDLE hOffsetY = NULL; // ROI = {OffsetX, Width, OffsetY, Height}; uint64_t ROI[] = {612,1224, 512,1024}; // Retrieve GenlCam node. Nd_GetNode(s_hCam, "Width", &hWidth); Nd_GetNode(s_hCam, "Height", &hHeight); Nd_GetNode(s_hCam, "OffsetX", &hOffsetX); Nd_GetNode(s_hCam, "OffsetY", &hOffsetY); // Set ROI Nd_SetIntValue(s_hCam, hWidth, ROI[1]); Nd_SetIntValue(s_hCam, hOffsetX, ROI[0]); Nd_SetIntValue(s_hCam, hHeight, ROI[3]); Nd_SetIntValue(s_hCam, hOffsetY, ROI[2]);

映像の幅を小さくする場合は、最初に Width を設定し、その後、OffsetX を設定します。 映像の幅を大きくする場合は、最初に OffsetX を設定し、その後、Width を設定します。 映像の高さを小さくする場合は、最初に Height を設定し、その後、OffsetY を設定します。 映像の高さを大きくする場合は、最初に OffsetY を設定し、その後、Height を設定します。

詳細は[TeliCamAPI Library manual]の[INode functions], [IInteger node functions]を参照してください。

Register access API

IDC2 レジスタに直接アクセスしてスケーラブルを制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

♦Scalable

OffsetX, Width, OffsetY, Height レジスタの Value フィールドに書き込みます。

// ROI = {OffsetX, Width, OffsetY, Height}; uint32_t ROI[] = {612,1224, 512,1024};
// Set ROI (in one by one) Cam_WriteReg(s_hCam, 0x202094, 1, &ROI[0]); Cam_WriteReg(s_hCam, 0x202098, 1, &ROI[1]); Cam_WriteReg(s_hCam, 0x20209C, 1, &ROI[2]); Cam_WriteReg(s_hCam, 0x2020A0, 1, &ROI[3]);
// Set ROI (in block) Cam_WriteReg(s_hCam, 0x202094, 4, &ROI[0]);

IIDC2 レジスタアクセスでは

OffsetX, Width, OffsetY, Height を任意の順番で設定できます。 (one by one access) OffsetX, Width, OffsetY, Height を 1 回のアクセスで設定することも可能です。 (block access)

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小値/最大値

Scalable	BU502MG / MCF	BU805MG / MCF	BU1208MG / MCF
Width/OffsetX 設定単位	4	4	4
Height/OffsetY 設定単位	8	8	8
最小ユニットサイズ	64 x 64	64 x 64	64 x 64
最大ユニットサイズ (※)	2448×2048	2848×2848	4096×3008

※ 出荷設定

● 備考

・映像ストリーム出力中は、Width, Height, OffsetX, OffsetY レジスタ設定変更が無効となります。

<u>Binning</u>

ビニング読出しでは隣接する画素を加算することで、画素単位の感度が向上します。 さらにインターフェース帯域幅の占有帯域の軽減とフレームレートを向上させることができます。

ビニング動作のイメージ

- ビニング時の各出力フォーマットにおけるフレームレート(fps)
 - BU502MG

Mono	8	水平		
		1 2 4		
	1	74	74	74
垂直	2	74	240	240
	4	74	240	240

• BU502MCF

Bayer	8	水平		
		1 2 4		4
	1	74	74	74
垂直	2	74	74	74
	4	74	74	74

• BU805MG

Mono	8	水平		
		1 2 4		
	1	46	48	48
垂直	2	48	163	163
	4	48	163	163

• BU805MCF

Bayer	8	水平		
		1 2 4		
	1	46	48	48
垂直	2	48	48	48
	4	48	48	48

• BU1208MG

Mono	8	水平		
		1 2 4		4
	1	30	33	33
垂直	2	33	119	119
	4	33	119	119

• BU1208MCF

Bayer	8	水平		
			2	4
	1	30	33	33
垂直	2	33	33	33
	4	33	33	33

Mono	10	水平		
/Mone	o12	1 2 4		4
	1	37	62	62
垂直	2	62	151	202
	4	62	202	202

Bayer	10	水平		
/Baye	r12	1 2 4		
	1	37	62	62
垂直	2	62	62	62
	4	62	62	62

Mono	10	水平		
/Mon	o12	1 2 4		4
	1	23	41	41
垂直	2	41	93	137
	4	41	137	137

Bayer	10	水平		
/Baye	r12	1 2 4		4
	1	23	41	41
垂直	2	41	41	41
	4	41	41	41

Mono	10	水平		
/Mone	o12	1 2 4		
	1	15	28	28
垂直	2	28	61	100
	4	28	100	100

Bayer	10	水平		
/Baye	r12	1 2 4		
	1	15	28	28
垂直	2	28	28	28
	4	28	28	28

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
BinningHorizontal	llnteger	4	R/W	水平方向のビニングライン数を設定します。
BinningVertical	llnteger	4	R/W	垂直方向のビニングライン数を設定します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
BinningHorizontal	Implemented	0x202120	[31]	R	この機能が有効かどうかを返します。
	Min	0x202134	4	R	水平方向のビニングライン数の最小値を返します。
	Max	0x202138	4	R	水平方向のビニングライン数の最大値を返します。
	Value	0x20213C	4	R/W	水平方向のビニングライン数を設定します。
BinningVertical	Implemented	0x202140	[31]	R	この機能が有効かどうかを返します。
	Min	0x202154	4	R	垂直方向のビニングライン数の最小値を返します。
	Max	0x202158	4	R	垂直方向のビニングライン数の最大値を返します。
	Value	0x20215C	4	R/W	垂直方向のビニングライン数を設定します。

● TeliCamSDK 制御

Camera feature API

専用 API を使用して Binning を制御します。

API 名	説明
GetCamBinningHorizontalMinMax	水平方向のビニングラインの最小値と最大値を取得します。
GetCamBinningHorizontal	水平方向のビニングライン数を取得します。
SetCamBinningHorizontal	水平方向のビニングライン数を設定します。
GetCamBinningVerticalMinMax	垂直方向のビニングラインの最小値と最大値を取得します。
GetCamBinningVertical	垂直方向のビニングライン数を取得します。
SetCamBinningVertical	垂直方向のビニングライン数を設定します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して Binning を制御します。

♦Binning

```
// GenlCam node handle
CAM_NODE_HANDLE hBinning = NULL;
// Binning = 2x2
uint64_t
              Binning = 2;
// Retrieve GenlCam node.
Nd_GetNode(s_hCam, "BinningHorizontal", &hBinning);
// Nd_GetNode(s_hCam, "BinningVertical", &hBinning); // either will do
// Set Binning
Nd_SetIntValue(s_hCam, hBinning, Binning);
```

詳細は[TeliCamAPI Library manual]の[INode functions], [IInteger node functions]を参照して ください。

Register access API

IIDC2 レジスタに直接アクセスして Binning を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

♦Binning

BinningHorizontal レジスタ または BinningVertical レジスタの Value フィールドに書き込み

ます。

```
// Binning = 2x2
uint32_t
           Binning = 2;
// Set Binning
Cam_WriteReg(s_hCam, 0x20213C, 1, &Binning);
// Cam_WriteReg(s_hCam, 0x20215C, 1, &Binning); // either will do
```

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

(備考

- ビニングとデシメーションを同時に動作させることはできません。
- ・映像ストリーム出力中は BinningHorizontal および BinningVertical レジスタ設定変更が無効となり ます。
- ・水平・垂直ビニングに3は設定できません。

Decimation

デシメーション機能は読み出しラインを間引くことにより全有効エリアを高速で読み出し、 インターフェース帯域幅の占有帯域の軽減とフレームレートを向上させることができます。

デシメーション動作のイメージ

- デシメーション時の各出力フォーマットにおけるフレームレート(fps)
 - BU502MG

Mono8		水平		
			2	4
	1	74	74	74
垂直	2	74	240	240
	4	74	240	240

Mono	10	水平		
/Mone	o12	1	2	4
	1	37	62	62
垂直	2	62	151	202
	4	62	202	202

• BU502MCF

Bayer	8	水平		
		1	2	4
	1	74	74	74
垂直	2	74	224	224
	4	74	224	224

• BU805MG

Mono	Mono8		水平	
		1 2		4
	1	46	48	48
垂直	2	48	163	163
	4	48	163	163

• BU805MCF

Bayer8		水平			
		1	4		
	1	46	48	48	
垂直	2	48	165	165	
	4	48	165	165	

• BU1208MG

Mono	8	水平		
			4	
	1	30	33	33
垂直	2	33	119	119
	4	33	119	119

• BU1208MCF

Bayer	8	水平		
		1	2	4
	1	30	33	33
垂直	2	33	120	120
	4	33	120	120

Bayer10			水平	
/Bayer12		1	2	4
	1	37	62	62
垂直	2	62	151	156
	4	62	156	156

Mono10		水平			
/Mono12			2	4	
	1	23	41	41	
垂直	2	41	93	137	
	4	41	137	137	

Bayer10		水平			
/Bayer12		1	2	4	
	1	23	41	41	
垂直	2	41	93	117	
	4	41	117	117	

Mono10		水平			
/Mono12		1	2	4	
	1	15	28	28	
垂直	2	28	61	100	
	4	28	100	100	

Bayer10		水平				
/Bayer12			2	4		
	1	15	28	28		
垂直	2	28	61	100		
	4	28	100	100		

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
DecimationHorizontal	llnteger	4	R/W	水平方向のデシメーションライン数を設定します。
DecimationVertical	llnteger	4	R/W	垂直方向のデシメーションライン数を設定します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
DecimationHorizontal	Implemented	0x202160	[31]	R	この機能が有効かどうかを返します。
	Min	0x202174	4	R	水平方向のデシメーションライン数の最小値を返します。
	Max	0x202178	4	R	水平方向のデシメーションライン数の最大値を返します。
	Value	0x20217C	4	R/W	水平方向のデシメーションライン数を設定します。
DecimationVertical	Implemented	0x202180	[31]	R	この機能が有効かどうかを返します。
	Min	0x202184	4	R	垂直方向のデシメーションライン数の最小値を返します。
	Max	0x202188	4	R	垂直方向のデシメーションライン数の最大値を返します。
	Value	0x20218C	4	R/W	垂直方向のデシメーションライン数を設定します。

● TeliCamSDK 制御

Camera feature API

専用の API を使用して Decimation を制御します。

API 名	説明
GetCamDecimationHorizontalMinMax	水平方向のデシメーションライン数の最小値と最大値を取得します。
GetCamDecimationHorizontal	水平方向のデシメーションライン数を取得します。
SetCamDecimationHorizontal	水平方向のデシメーションライン数を設定します。
GetCamDecimationVerticalMinMax	垂直方向のデシメーションライン数の最小値と最大値を取得します。
GetCamDecimationVertical	垂直方向のデシメーションライン数を取得します。
SetCamDecimationVertical	垂直方向のデシメーションライン数を設定します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して Decimation を制御します。

Decimation

// GenlCam node handle CAM_NODE_HANDLE hDecimation = NULL; // Decimation = 2x2 uint64_t Decimation = 2: // Retrieve GenlCam node. Nd_GetNode(s_hCam, "DecimationHorizontal", &hDecimation); // Nd_GetNode(s_hCam, "DecimationVertical", &hDecimation); // either will do // Set Decimation Nd_SetIntValue(s_hCam, hDecimation, Decimation);

詳細は[TeliCamAPI Library manual]の[INode functions], [IInteger node functions]を参照して ください。

Register access API

IIDC2 レジスタに直接アクセスして Decimation を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

Decimation

DecimationHorizontal レジスタ または DecimationVertical レジスタの Value フィールドに書

き込みます。

// Decimation = 2x2
uint32_t Decimation = 2;
// Set Decimation
Cam_WriteReg(s_hCam, 0x20213C, 1, &Decimation);
// Cam_WriteReg(s_hCam, 0x20215C, 1, &Decimation); // either will do

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

● 備考

- ・デシメーションとビニングを同時に動作させることはできません。
- ・映像ストリーム出力中は DecimationHorizontal および DecimationVertical レジスタ設定変更が無効 となります。
- ・水平・垂直デシメーションに3は設定できません。

<u>Reverse</u>

映像出力を水平方向、垂直方向に反転することができます。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
ReverseX	lBoolean	4	R/W	水平方向の映像反転を行います。
ReverseY	lBoolean	4	R/W	垂直方向の映像反転を行います。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
ReverseX	Implemented	0x2021A0	[31]	R	この機能が有効かどうかを返します。
	Value	0x2021B0	4	R/W	水平方向の映像反転を行います。. [0]:Off [1]:On
ReverseY	Implemented	0x2021C0	[31]	R	この機能が有効かどうかを返します。
	Value	0x2021D0	4	R/W	垂直方向の映像反転を行います。 [0] : Off [1] : On

● TeliCamSDK 制御

Camera feature API

専用の API を使用して Reverse を制御します。

API名	説明
GetCamReverseX	ReverseX の値を取得します。
SetCamReverseX	ReverseX に値を設定します。
GetCamReverseY	ReverseY の値を取得します。
SetCamReverseY	ReverseY に値を設定します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してくだ さい。

GenlCam function API

GeniCam API を使用して Reverse を制御します。

♦Reverse

ReverseX で水平方向の映像反転を設定します。

ReverseY で垂直方向の映像反転を設定します。

// GenlCam node handle
CAM_NODE_HANDLE
CAM_NODE_HANDLE hReverseY = NULL;
// Retrieve GenlCam node.
Nd_GetNode(s_hCam, "ReverseX", &hReverseX);
Nd_GetNode(s_hCam, "ReverseY", &hReverseY);
// Set Reverse (flip horizontal and vertical direction)
Nd_SetBoolValue(s_hCam, hReverseX, true);
Nd_SetBoolValue(s_hCam, hReverseY, true);

詳細は[TeliCamAPI Library manual]の[INode functions], [IBoolean node functions]を参照し てください。

Register access API

IDC2 レジスタに直接アクセスして Reverse を制御します。

API 名	説明	
Cam_ReadReg	値を読み出します。	
Cam_WriteReg	値を書き込みます。	

♦Reverse

ReverseX レジスタの Value フィールドに書き込みます。

ReverseY レジスタの Value フィールドに書き込みます。

// Set Reverse (flip horizontal and vertical direction) uint32_t dat = 1; Cam_WriteReg(s_hCam, 0x2021B0, 1, &dat); Cam_WriteReg(s_hCam, 0x2021D0, 1, &dat);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

● 備考

・映像ストリーム出力中は ReverseX および ReverseY レジスタ設定変更が無効となります。

PixelFormat

映像ストリームのピクセルフォーマットを選択します。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
PixelCoding	lEnumeration	4	R/W	ピクセルコーディングを選択します。
PixelSize	lEnumeration	4	R/W	映像画素のビットサイズを選択します。
PixelFormat	lEnumeration	4	R/W	ピクセルフォーマットを選択します。
				ピクセルフォーマットは AIA の Pixel Format Naming Convention に
				準拠します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
Pixe1Coding	Implemented	0x2020C0	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x2020CC	16	R	[0] : Mono
		~0x2020D8			[96] : BayerGR
					[99] : BayerRG
					[102] : BayerGB
					[105] : BayerBG
	Value	0x2020DC	4	R/W	ピクセルコーディングを選択します。
PixelSize	Implemented	0x2020E0	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x2020EC	16	R	[8] : Bpp8
		~0x2020F8			[10] : Bpp10
					[12]:Bpp12
	Value	0x2020FC	4	R/W	映像画素のビットサイズを選択します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
PixelFormat	Implemented	0x202400	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x20240C	16	R	[1]:Mono8
		~0x202418			[3] : Mono10
					[5]:Mono12
					[8] : BayerGR8
					[9] : BayerRG8
					[10] : BayerGB8
					[11] : BayerBG8
					[12] : BayerGR10
					[13] : BayerRG10
					[14] : BayerGB10
					[15] : BayerBG10
					[16] : BayerGR12
					[17] : BayerRG12
					[18] : BayerGB12
					[19] : BayerBG12
	Value	0x20241C	4	R/W	ピクセルフォーマットを選択します。

● ピクセルフォーマット一覧

◆白黒モデル

PixelSize PixelCoding	Bpp8	Bpp10	Bpp12
Mono	Mono8 (%)	Mono10	Mono12
PixelFormat ID	0x01080001	0x01100003	0x01100005

※ 出荷設定

◆カラーモデル

PixelSize PixelCoding	Bpp8	Bpp10	Bpp12
BayerBG(%2)	BayerBG8	BayerBG10	BayerBG12
PixelFormat ID	0x0108000B	0x0110000F	0x01100013

※1 出荷設定

※2 ReverseX、ReverseY 設定は False

◆Reverse 時の Bayer フォーマット

ReverseX ReverseY	F	ALSE		TRUE
	B	ayerBG	BayerGB	
	Bpp8	0x0108000B	Bpp8	0x0108000A
TALOL	Bpp10	0x0110000F	Bpp10	0x0110000E
	Bpp12	0x01100013	Bpp12	0x01100012
	BayerGR		BayerRG	
	Bpp8	0x01080008	Bpp8	0x01080009
TRUE	Bpp10	0x0110000C	Bpp10	0x0110000D
	Bpp12	0x01100010	Bpp12	0x01100011

◆Decimation 時の Bayer フォーマット

Horizontal Vertical	1		2		4	
	Ba	ayerBG	BayerBG		BayerBG	
1	Bpp8	0x0108000B	Bpp8	0x0108000B	Bpp8	0x0108000B
'	Bpp10	0x0110000F	Bpp10	0x0110000F	Bpp10	0x0110000F
	Bpp12	0x01100013	Bpp12	0x01100013	Bpp12	0x01100013
	BayerBG		BayerGR		BayerGR	
0	Bpp8	0x0108000B	Bpp8	0x01080008	Bpp8	0x01080008
2	Bpp10	0x0110000F	Bpp10	0x0110000C	Bpp10	0x0110000C
	Bpp12	0x01100013	Bpp12	0x01100010	Bpp12	0x01100010
	BayerBG		BayerGR		BayerGR	
Λ	Bpp8	0x0108000B	Bpp8	0x01080008	Bpp8	0x01080008
4	Bpp10	0x0110000F	Bpp10	0x0110000C	Bpp10	0x0110000C
	Bpp12	0x01100013	Bpp12	0x01100010	Bpp12	0x01100010

● TeliCamSDK 制御

Camera feature API

専用の API を使用して PixelFormat を制御します。

API 名	説明
GetCamPixelFormat	PixelFormat の値を取得します。
SetCamPixelFormat	PixelFormat の値を取得します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して PixelFormat を制御します。

PixelCoding/PixelSize

PixelCoding レジスタと PixelSize レジスタの組み合せで PixelFormat を決定します。

1.PixelCoding にてピクセルコーディングを選択します。

設定値は Enumeration 型で下記のとおりです。

Integer	String
0	Mono
96	BayerGR
99	BayerRG
102	BayerGB
105	BayerBG

2.PixelSize にて映像画素のビットサイズを選択します。

設定値は Enumeration 型で下記のとおりです。

Integer	String
8	Bpp8
10	Bpp10
12	Bpp12

// GenlCam node handle CAM_NODE_HANDLE hCoding = NULL; CAM_NODE_HANDLE hSize = NULL; // Retrieve GenlCam node. Nd_GetNode(s_hCam, "PixelCoding", &hCoding); Nd_GetNode(s_hCam, "PixelSize", &hSize); // 1.Select a pixel coding. Nd_SetEnumStrValue(s_hCam, hCoding, "Mono"); // 2.Select a pixel size. Nd_SetEnumStrValue(s_hCam, hSize, "Bpp10");

♦PixelFormat

PixelFormat にてピクセルフォーマットを選択します。 設定値は Enumeration 型で下記のとおりです。

Integer	String	Integer	String
1	Mono8	12	BayerGR10
3	Mono10	13	BayerRG10
5	Mono12	14	BayerGB10
8	BayerGR8	15	BayerBG10
9	BayerRG8	16	BayerGR12
10	BayerGB8	17	BayerRG12
11	BayerBG8	18	BayerGB12
		19	BayerBG12

// GenlCam node handle CAM_NODE_HANDLE hFormat = NULL;

// Retrieve GenlCam node.

Nd_GetNode(s_hCam, "PixelFormat", &hFormat);

// 1.Select a pixel format.

Nd_SetEnumStrValue(s_hCam, hFormat, "Mono10");

詳細は[TeliCamAPI Library manual]の[INode functions], [IEnumeration node functions]を参照してください。.

Register access API

IIDC2 レジスタに直接アクセスして PixelFormat を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

◆PixelCoding/PixelSize

PixelCoding レジスタと PixelSize レジスタの組み合せで PixelFormat を決定します。

1.PixelCoding レジスタの Value フィールドに書き込みます。

2.PixelSize レジスタの Value フィールドに書き込みます。

uint32_t coding = 0; // Mono uint32_t size = 10; // Bpp10

// 1.Select a pixel coding.
 Cam_WriteReg(s_hCam, 0x2020DC, 1, &coding);
 // 2.Select a pixel size.
 Cam_WriteReg(s_hCam, 0x2020FC, 1, &size);

♦PixelFormat

PixelFormat レジスタの Value フィールドに書き込みます。

uint32_t format = 3; // Mono10

// 1.Select a pixel format. Cam_WriteReg(s_hCam, 0x20241C, 1, &format);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

● 備考

・映像ストリーム中は PixelCoding および PixelSize レジスタ設定変更が無効となります。

TestPattern

本カメラではテストパターン出力をサポートしています。サポートしているパターンは以下のとおりです。

White = 全画面 255LSB @ 8bit

GreyB = 85LSB @ 8bit

GreyVerticalRamp = 垂直ランプ

テストパターン

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
TestPattern	lEnumeration	4	R/W	テストパターンを選択します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
TestPattern	Implemented	0x21F120	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x21F12C	16	R	[O] : Off
		~0x21F138			[1] : Black
					[2] : White
					[3] : GrayA
					[4] : GrayB
					[5] : GreyHorizontalRamp
					[6] : GrayScale
					[7] : ColorBar
					[8] : GreyVerticalRamp
	Value	0x21F13C	4	R/W	テストパターンを選択します。

● TeliCamSDK 制御

Camera feature API

専用の API を使用して TestPattern を制御します。

API名	説明
GetCamTestPattern	TestPattern の値を取得します。
SetCamTestPattern	TestPattern の値を取得します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して TestPatterm を制御します。

♦TestPattern

テストパターンを選択します。.

設定値は Enumeration 型で下記のとおりです。

Integer	String	説明
O (🔆)	Off	テストパターン Off、通常映像
1	Black	全てのピクセルが0
2	White	全てのピクセルが 255 @Mono8
3	GreyA	全てのピクセルが 170 @Mono8
4	GreyB	全てのピクセルが 85 @Mono8
5	GreyHorizontalRamp	水平方向ランプ
6	GreyVerticalRamp	垂直方向ランプ
7	ColorBar	カラーバー
8	GreyScale	グレースケール

※ 出荷設定

// GenlCam node handle CAM_NODE_HANDLE hNode = NULL;

// Retrieve GenlCam node. Nd_GetNode(s_hCam, "TestPattern", & hNode);

// 1.Select a test pattern. Nd_SetEnumStrValue(s_hCam, hNode, "GreyHorizontalRamp");

詳細は[TeliCamAPI Library manual]の[INode functions], [IEnumeration node functions]を参照してください。

Register access API

IIDC2 レジスタに直接アクセスして TestPattern を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

♦TestPattern

TestPattern レジスタの Value フィールドに書き込みます。

uint32_t dat = 5; // Horizontal Ramp

// 1.Select a test pattern. Cam_WriteReg(s_hCam, 0x21F13C, 1, &dat);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

AcquisitionControl

カメラの映像出力について、実行・設定をします。

カメラ起動時、映像ストリームは出力されていないので、映像を取得するために映像ストリーム開始コマンドを発行する必要があります。また各種レジスタには設定変更をする際、映像ストリームを停止させる必要がある場合は映像ストリーム停止コマンドを発行する必要があります。

映像フレームレートはカメラが動作する範囲内で任意に設定できます。スケーラブル/ビニング/デシメ ーション/リンク速度により最大フレームレートは変わります。

また、高フレームレートモード(HighFramerateMode)も有しています。高フレームレートモードを使用 することにより、フレームレートを向上させることができます。

※HighFrameRateModeはMono8(白黒モデルのみ)/Bayer8(カラーモデルのみ)で対応しています。

名称	Interface	Length Byte / [bit]	Access	説明
AcquisitionMode	Enumeration	4	R/W	映像ストリーム転送モードを選択します。
AcquisitionStart	ICommand	4	W	映像ストリーム転送開始を実行します。
AcquisitionStop	ICommand	4	W	映像ストリーム転送停止を実行します。
AcquisitionAbort	ICommand	4	W	映像ストリーム転送中断を実行します。
AcquisitionFrameCount	llnteger	4	R/W	MulitiFrame 動作時の映像ストリーム転送枚数を設定します。
AcquisitionFrameRateEnable	Enumeration	4	R/W	映像のフレームレート設定を有効化します。
AcquisitionFrameRate	lFloat	4	R/W	映像のフレームレートを設定します。
AcquisitionFrameIntervalControl	Enumeration	4	R/W	映像のフレームインターバル設定を有効化します。
AcquisitionFrameInterval	IFloat	4	R/W	映像のフレームインターバルを設定します。

● GenlCam ノード

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
AcquisitionMode	Implemented	0x203020	[31]	R	この機能が有効かどうかを返します。
					[0]: Abort
		0.000000			[1]: Stop
	ListOfElements	000000000000000000000000000000000000000	16	R	[8]: Continuous
		0,200000			[9]: MultiFrame
					[10]: Image Buffer Read
	Value	0x20303C	4	R/W	映像ストリーム転送モードを選択します。
AcquisitionFrameCount	Implemented	0x203040	[31]	R	この機能が有効かどうかを返します。
	Min	0x203054	4	R	MulitiFrame 動作時の最少枚数を返します。
	Max	0x203058	4	R	MulitiFrame 動作時の最大枚数を返します。
		0.000050	4		MulitiFrame 動作時の映像ストリーム転送枚
	Value	UX2U3U5C	4	R/ W	数を設定します。
AcquisitionFrameRate	Implemented	0x2030A0	[31]	R	この機能が有効かどうかを返します。
	Constral	0,202049	4		[0] : NoSpecify
	Control	UX2U3UA6	4	F7/ VV	[1] : Manual
	Mult	0x2030AC	4	R	
	Di∨	0x2030B0	4	R	邢以順 [IDS] - Navv ← (IVIUIL / DIV)
	Min	0x2030B4	4	R	フレームレートの最小値を返します。
	Max	0x2030B8	4	R	フレームレートの最大値を返します。
	Value	0x2030BC	4	R/W	映像のフレームレートを設定します。
AcquisitionFrameInterval	Implemented	0x2030C0	[31]	R	この機能が有効かどうかを返します。
	Constral	0,000000	4		[0] : NoSpecify
	Control	UX2U3UC6	4	F7/ VV	[1] : Manual
	Mult	0x2030CC	4	R	
	Di∨	0x2030D0	4	R	₩XJ10 [Sec] - Naw * (Mult / Div)
	Min	0x2030D4	4	R	フレームインターバルの最小値を返します。
	Max	0x2030D8	4	R	フレームインターバルの最大値を返します。
	Value	0x2030DC	4	R/W	映像のフレームインターバルを設定します。
HighFrameRateMode	Implemented	0x21F660	[31]	R	この機能が有効かどうかを返します。
		0.045000		5	[O] : Off
	LISTUTElements	UX21F66C	4	К	[1]:On
) (-1	0.045070	<u>,</u>		高フレームレートモードの ON/OFF を制御し
	value	UXZIFO/U	4	ri/ VV	ます。

● TeliCamSDK 制御

Camera feature API

専用の API を使用して AcquisitionControl を制御します。

API 名	説明
GetCamAcquistionFrameCountMinMax	AcquistionFrameCountの最小値と最大値を取得します。
GetCamAcquistionFrameCount	AcquistionFrameCountの値を取得します。
SetCamAcquistionFrameCount	AcquistionFrameCountの値を設定します。
GetCamAcquistionFrameRateControl	AcquistionFrameRateControlの値を取得します。
SetCamAcquistionFrameRateControl	AcquistionFrameRateControlの値を設定します。
GetCamAcquistionFrameRateMinMax	AcquistionFrameRate の最小値と最大値を取得します。
GetCamAcquistionFrameRate	AcquistionFrameRateの値を取得します。
SetCamAcquistionFrameRate	AcquistionFrameRateの値を設定します。
GegCamHighFrameRateMode	HighFrameRrateMode の値を取得します。
SegCamHighFrameRateMode	HighFrameRateMode の値を設定します。

1.MultiFrame/ImageBuffer 動作時に転送する映像枚数を設定します。(任意) SetCamAcquistionFrameCount 関数にて AcquisitionFrameCount を設定します。 ※映像ストリームを連続的にキャプチャしたい場合は、AcquisitionFrameCount を設定する必要 はありません。

2.フレームレート設定優先度を選択します。(任意)

SetCamAcquistionFrameRateControl 関数にて AcquisitionFrameRateControl を設定します。

AcquisitionFrameRateControl	説明
NoSpecify (※)	ExposureTimeの設定値優先
Manual	AcquisitionFrameRateの設定値優先

※ 出荷設定

3.高フレームレートモードを設定します。(任意)

SetCamHighFrameRateMode 関数にて HighFrameRateMode を設定します。

4.フレームレートを設定します。(任意)

SetCamAcquistionFrameRate 関数にて AcquisitionFrameRate を設定します。 または、SetCamAcquistionFrameInterval 関数にて AcquisitionFrameInterval を設定します。 AquisitionFrameInterval は AcquisitionFrameRate の逆数です。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

5.映像ストリームをキャプチャします。

TeliCamAPI はコマンド処理やバッファ処理などのストリーミング機能を提供し画像ストリーム を簡単にキャプチャします。

TeliCamSDK インストールフォルダ内の[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]サンプルコードを参照してください。

GenlCam function API

GeniCam API を使用して AcquisitionControl を制御します。

1.MultiFrame/ImageBuffer 動作時に転送する映像枚数を設定します。(任意)

Nd_GetNode によって AcquisitionFrameCount の Integer インターフェースハンドルを取得 します。

Integer ノード関数にて Acquisition FrameCount を設定します。

(例;Nd_GetIntMin,Nd_GetIntMax,Nd_GetIntValue,Nd_SetIntValue)

※映像ストリームを連続的にキャプチャしたい場合は、AcquisitionFrameCountを設定する必要はありません。

2.フレームレート設定優先度を選択します。(任意)

Nd_GetNode によって AcquisitionFrameRateControl の IEnumeration インターフェースハンドルを取得します。

lenumeration ノード関数によって Acquisition FrameRateControl を設定します。

(例; Nd_GetEnumIntValue, Nd_SetEnumIntValue, Nd_GetEnumStrValue,

Nd_SetEnumStrValue)

設定値は Enumeration 型で下記のとおりです。

Integer	String
O (※)	NoSpecify
1	Manual
	※ 出荷設定

3.フレームレートを設定します。(任意)

Nd_GetNode にて AcquisitionFrameRate または AcquisitionFrameIntervalのIFloat インターフェースハンドルを取得します。

IFloat ノード関数にてAcquisitionFrameRate または AcquisitionFrameIntervalを設定します。 AquisitionFrameInterval は AcquisitionFrameRate の逆数です。

(例; Nd_GetFloatMin, Nd_GetFloatMax, Nd_GetFloatValue, Nd_SetFloatValue)

4.映像ストリームをキャプチャします。

TeliCamAPI はコマンド処理やバッファ処理などのストリーミング機能を提供し画像ストリーム を簡単にキャプチャします。

TeliCamSDK インストールフォルダ内の[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]サンプルコードを参照してください。

Register access API

IIDC2 レジスタに直接アクセスして AcquisitionControl を制御します。

API 名	説明	
Cam_ReadReg	値を読み出します。	
Cam_WriteReg	値を書き込みます。	

- 1.MultiFrame/ImageBuffer 動作時に転送する映像枚数を設定します。(任意) AcquisitionFrameCount を制御するために AcquisitionFrameCount レジスタの Value フィー ルドに書き込みます。
- 2.フレームレート設定優先度を選択します。(任意) AcquisitionFrameRateの優先度を制御するために AcquisitionFrameRate レジスタの Control フィールドに書き込みます。
- 3.高フレームレートモードを設定します。(任意)

HighFramerateMode を制御するために HighFramerateMode レジスタの Value フィールドに 書き込みます。

4.フレームレートを設定します。(任意) AcquisitionFrameRate を制御するために AcquisitionFrameRate レジスタの Value フィール ドに書き込みます。

5.映像ストリームをキャプチャします。

TeliCamAPI はコマンド処理やバッファ処理などのストリーミング機能を提供し画像ストリーム を簡単にキャプチャします。

TeliCamSDK インストールフォルダ内の[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]サンプルコードを参照してください。

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

AcquisitionFrameRate		BU502MG/BU502MCF	BU802MG/BU802MCF	BU1208MG/BU1208MCF
最小値	Raw 値	1		
	絶対値	0.061 [fps]		
最大値	Raw 値	ImageFormatControl 設定による		
	絶対値			
初期値	Raw 値	1228	766	504
	絶対値	74.9 [fps]	46.7 [fps]	30.7 [fps]
式		絶対値 [fps] = Raw 値 x 125/ 2048		

◆最小値/最大値

お願い:高フレームレートモード使用時における注意点

高フレームレートモードを使用しますとフレームレートと感度が約4倍向上しますが画質が悪化する場合があります。高フレームレートモードを使用する場合は、機械・装置全体で最終的な画質の確認をお客様にて実施していただくようお願いいたします。

● 備考

- ・映像ストリーム出力中は AcquisitionFrameRateControl, AcquisitionFrameRate,
 AcquisitionFrameIntervalControl, AcquisitionFrameInterval レジスタ設定変更が無効となります。
- ・露光時間設定がフレームレート設定より長い場合、カメラは露光時設定を優先します。

お願い:映像のフレーム落ちについて

ご使用される PC 及びインターフェースカードの構成によってはフレーム落ちが発生するなど正常に映像が取り込めない場合があります。このような場合はフレームレートの設定を低くしてご使用ください。
<u>ImageBuffer</u>

ImageBuffer は、イメージバッファに画像を取り込んでおき、任意のタイミングで読み出しを行うことができます。

この機能はノーマルシャッタモードでも動作しますが、通常ランダムトリガモードにて使用します。 TriggerControlの項目も参照ください。

Image Buffer

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
ImageBufferMode	lEnumeration	4	R/W	イメージバッファモードを有効にします。
ImageBufferFrameCount	llnteger	4	R/W	イメージバッファに取り込まれた画像枚数を返します。
ImageBufferRead	ICommand	4	W	イメージバッファから画像を読み出します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
ImageBufferMode	Implemented	0x203060	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x20306C	16	R	[O] : Off
		~0x203078			[1] : On
	Value	0x20307C	4	R/W	イメージバッファモードを有効にします。
ImageBufferFrameCount	Implemented	0x203080	[31]	R	この機能が有効かどうかを返します。
	Min	0x203094	4	R	イメージバッファモードの最小画像枚数を返
					します。
	Max	0x203098	4	R	イメージバッファモードの最大画像枚数を返
					します。
	Value	0x20309C	4	R	イメージバッファに取り込まれた画像枚数を
					返します。

● TeliCamSDK 制御

Camera feature API

専用の API を使用して ImageBuffer を制御します。

API 名	説明
GetCamImageBufferMode	ImageBuffer の値を取得します。
SetCamImageBufferMode	ImageBuffer モードを設定します。
GetCamImageBufferFrameCount	ImageBufferFrameCountの値を取得します。
ExecuteCamImageBufferRead	Image Buffer から画像を読み出します。

♦ImageBuffer

1.イメージバッファモードを有効にします。

SetCamImageBufferMode 関数によって ImageBufferMode を設定します。

2.映像ストリームをキャプチャします。

画像のキャプチャ開始/停止の方法は AcquisitionControl と同じです。 AcquisitionControl の項目も参照してください。

3.イメージバッファに取り込まれた画像枚数を読み出します。

GetCamImageBufferFrameCount 関数によってイメージバッファ内の画像枚数を読み出します。

4.画像を読み出します。

ExecuteCamImageBufferRead 関数によってイメージバッファから画像を読み出します。

5.イメージバッファから画像を受信します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して ImageBuffer を制御します。

◆ImageBuffer

1.ImageBufferMode によってイメージバッファモードを有効にします。

設定値は Enumeration 型で下記のとおりです。

Integer	String
O (※)	Off
1	On
	※ 出荷設定

73 / 157 Copyright © 2023 - 2024 Toshiba Teli Corporation, All rights reserved. 2.ストリームチャンネルのオープン/クローズ。

画像のキャプチャ開始/停止の方法は AcquisitionControl と同じです。

AcquisitionControlの項目も参照してください。

3.ImageBufferFrameCountによってバッファに取り込まれた画像枚数を読み出します。

4.ImageBufferReadによってバッファ内の画像を読み出します。

5.イメージバッファから画像を受信します。

6.イメージストリームのストップ/クローズ。

```
// GenlCam node handle
CAM_NODE_HANDLE hMode = NULL;
CAM_NODE_HANDLE hCount = NULL;
CAM_NODE_HANDLE hRead = NULL;
// Retrieve GenlCam node.
Nd_GetNode(s_hCam, "ImageBufferMode", &hMode);
Nd_GetNode(s_hCam, "ImageBufferFrameCount", &hCount);
Nd_GetNode(s_hCam, "ImageBufferRead", &hRead);
// 1.Select an Image Buffer mode
Nd_SetEnumStrValue(s_hCam, hMode, "On");
// 2.0pen and Start image stream.
// 2.1.Set Trigger mode
        SetCamTriggerMode(s_hCam, true);
        SetCamTriggerSource(s_hCam, CAM_TRIGGER_SOFTWARE);
// 2.2.Open Stream
        s_hStrmEvt = CreateEvent(NULL, FALSE, FALSE, NULL);
        Strm_OpenSimple(s_hCam, &s_hStrm, &s_uilmgBufSize,
s hStrmEvt);
        s_pucImgBuf = (uint8_t *)VirtualAlloc(NULL, s_uiImgBufSize,
MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
   2.3.Stream Start
        Strm_Start(s_hStrm);
//
   2.4.Execute Software Trigger
        ExecuteCamSoftwareTrigger(s_hCam);
// 3.Read the number of frames in Image Buffer by
'ImageBufferFrameCount'.
int64_t count = 0;
while(count==0)
        Nd GetIntValue(s hCam, hCount, &count);
4.Read Image from Image Buffer by 'ImageBufferRead'.
Nd_CmdExecute(s_hCam, hRead);
// 5.Receive Image from Image Buffer
        uint32_t uiSize = s_uilmgBufSize;
        WaitForSingleObject(s_hStrmEvt, 1000);
        Strm_ReadCurrentImage(s_hStrm, s_pucImgBuf, &uiSize, NULL);
// 6.Stop and Close image stream.
   6.1.Stream Stop
        Strm_Stop(s_hStrm);
// 6.2.Close Stream
        Strm_Close(s_hStrm);
        CloseHandle(s_hStrmEvt);
        VirtualFree(s_pucImgBuf, 0, MEM_RELEASE);
```

Register access API

IIDC2 レジスタに直接アクセスして ImageBuffer を制御します。

API名	説明		
Cam_ReadReg	値を読み出します。		
Cam_WriteReg	値を書き込みます。		

♦ImageBuffer

1.イメージバッファモードを有効にします。

ImageBufferMode を制御するために ImageBufferMode レジスタの Value フィールドに書き 込みます。

2.ストリームチャンネルのオープン/クローズ。

画像のキャプチャ開始/停止の方法は AcquisitionControl と同じです。 AcquisitionControl の項目も参照してください。

3.イメージバッファに取り込まれた画像枚数を読み出します。 ImageBufferFrameCount レジスタのレジスタの Value フィールドを読み出します。

4.イメージバッファに取り込まれた画像を読み出します

ImageBufferRead を実行すために AcquisitionCommand レジスタの Value フィールドに[10] を書き込みます。

AcquisitionControlのAcquisitionCommandの項目も参照してください。

5.イメージバッファから画像を受信します。 6.イメージストリームのストップ/クローズ。

```
// 1.Select an Image Buffer mode
uint32_t
           dat = 1;
Cam_WriteReg(s_hCam, 0x20307C, 1, &dat);
// 2.0pen and Start image stream.
// 2.1.Set Trigger mode
        SetCamTriggerMode(s_hCam, true);
        SetCamTriggerSource(s_hCam, CAM_TRIGGER_SOFTWARE);
// 2.2.Open Stream
        s_hStrmEvt = CreateEvent(NULL, FALSE, FALSE, NULL);
        Strm_OpenSimple(s_hCam, &s_hStrm, &s_uilmgBufSize,
s_hStrmEvt);
        s_puclmgBuf = (uint8_t *)VirtualAlloc(NULL, s_uilmgBufSize,
MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
   2.3.Stream Start
        Strm_Start(s_hStrm);
11
   2.4. Execute Software Trigger
        ExecuteCamSoftwareTrigger(s_hCam);
// 3.Read the number of frames in Image Buffer.
uint32 t count = 0;
while(count==0)
        Cam_ReadReg(s_hCam, 0x20309C, 1, &count);
// 4.Read Image from Image Buffer, AcquisitionCommand = 10 : Image
Buffer Read
dat = 10;
Cam_WriteReg(s_hCam, 0x20303C, 1, &dat);
// 5.Receive Image from Image Buffer
        uint32_t uiSize = s_uilmgBufSize;
        WaitForSingleObject(s hStrmEvt, 1000);
        Strm_ReadCurrentImage(s_hStrm, s_pucImgBuf, &uiSize, NULL);
// 6.Stop and Close image stream.
// 6.1.Stream Stop
        Strm_Stop(s_hStrm);
// 6.2.Close Stream
        Strm_Close(s_hStrm);
        CloseHandle(s_hStrmEvt);
        VirtualFree(s_pucImgBuf, O, MEM_RELEASE);
```

詳細[TeliCamAPI Library manual]の[Camera functions]を参照してください。

● 備考

- ・バッファに取り込める画像枚数は画像サイズによって異なります。(最大 256MByte)
- ・ImageBufferRead コマンドで転送するフレーム数は、AcquisitionFrameCount で決まります。
- ・映像ストリーム出力中は ImageBufferMode レジスタ設定変更が無効となります。

TriggerControl

露光動作には、フリーランで動作するノーマルシャッタモードと外部からのトリガにより任意のタイミン グで動作するランダムトリガシャッタモードの2種類があります。 ランダムトリガシャッタモードは次の2とおりのトリガ入力で動作します。

カメラ背面のI/Oコネクタから入力されるトリガ(ハードウェアトリガ)

・USB3.2 Gen1 インターフェースを経由して入力されるトリガ(ソフトウェアトリガ)

カメラの動作モードをまとめると以下のようになります。

トリガ動作モード	同期	露光制御					
ノーマルシャッタ	フリーラン(内部同期)	ExposureTime レジスタ制御					
		・Edge モード:TriggerSequenceO					
		・Bulk モード:TriggerSequence6					
	ハードウェアトリガ	ExposureTime レジスタ制御					
ニンガットリガショック		・Level モード:TriggerSequence1					
7797597979		トリガパルス幅制御					
		・Edge モード:TriggerSequenceO					
	ソフトウェアトリガ	・Bulk モード:TriggerSequence6					
		ExposureTime レジスタ制御					

動作モー	ド
------	---

※上記以外の動作モードの組み合わせについては保証いたしません。

• Edge $\pm - + (\text{TriggerSequenceO})$ 露光時間は電子シャッタの設定値 トリガ信号 ExposureTime Exposure Image Streaming Image on Interface Bus • Level $\overline{t} - F$ (TriggerSequence1) 露光時間はトリガ信号のパルス幅 なお、短時間露光モード=ON 時は非対応です。 トリガ信号 パルス幅 Exposure Image Streaming Image on Interface Bus • Bulk $\mathbf{E} - \mathbf{F}$ (TriggerSequence6) 1回の外部トリガ信号入力で、 連続して複数回の露光と映像出力を行います。 トリガ信号 ExposureTime : TriggerAdditionalParameter = 3 Exposure Image Streaming Image Image Image on Interface Bus 制御モード ハードウェアトリガは入力信号のエッジで動作し、その極性はレジスタ設定によって変更できます。ま た有効エッジから露光開始するまでの時間に任意の遅延時間を付加することが可能です。

なお、ランダムトリガシャッタで動作させた場合、外部トリガを入力してから露光を開始するまでに遅 延時間が発生します。"仕様"の"タイミング"をご参照ください。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
TriggerMode	lEnumeration	4	R/W	カメラのトリガ動作モードを設定します。
TriggerSoftware	ICommand	4	W	ソフトウェアトリガを実行します。
TriggerSource	lEnumeration	4	R/W	ランダムトリガシャッタのトリガソースを選択します。
TriggerActivation	lEnumeration	4	R/W	ハードウェアトリガの有効エッジを選択します。
TriggerDelay	IFloat	4	R/W	トリガ信号検出から露光開始までの遅延時間を設定します。
TriggerSequence	lEnumeration	4	R/W	露光時間の制御モードを選択します。
TriggerAdditionalParameter	llnteger	4	R/W	Bulk モード時の露光回数を設定します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
TriggerMode	Implemented	0x207020	[31]	R	この機能が有効かどうかを返します。
	ListOfElemente	0x20702C	16	D	[0]:OFF (ノーマルシャッタ)
	LISTOTEIEMENTS	~0x207038	10	Π	[1]:ON (ランダムトリガシャッタ)
	Value	0x20703C	4	R/W	カメラのトリガ動作モードを設定します。
TriggerSequence	Implemented	0x207040	[31]	R	この機能が有効かどうかを返します。
		0,207040			[0]:TriggerSequence0 (Edge モード)
	ListOfElements	0x207040	16	R	[1]:TriggerSequence1 (Level モード)
		~UX2U7U56			[6]:TriggerSequence6 (Bulk モード)
	Value	0x20705C	4	R/W	露光時間の制御モードを選択します。
TriggerSource	Implemented	0x207060	[31]	R	この機能が有効かどうかを返します。
		0,007060			[0]:LineO (ハードウェアトリガ)
	ListOfElements	0x207000	16	R	[2]:Line2 (ハードウェアトリガ)
		~0x201018			[64]:Software (ソフトウェアトリガ)
		0,207070	Л		ランダムトリガシャッタのトリガソースを
	value	0x201010	4	n/ vv	選択します。
TriggerAdditionalParameter	Implemented	0x207080	[31]	R	この機能が有効かどうかを返します。
	Min	0x207094	4	R	Bulk モード時の最小露光回数を返します。
	Max	0x207098	4	R	Bulk モード時の最大露光回数を返します。
	Value	0x20709C	4	R/W	Bulk モード時の露光回数を設定します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
TriggerDelay	Implemented	0x2070A0	[31]	R	この機能が有効かどうかを返します。
	Mult	0x2070AC	4	R	
	Di∨	0x2070B0	4	R	#EXUIE [Sec] = Haw * (IVIUIT / DIV)
	Min	0x2070B4	4	R	遅延時間の最小値を返します。
	Max	0x2070B8	4	R	遅延時間の最大値を返します。
	Value	0x2070BC	4	R/W	トリガ信号検出から露光開始までの遅延時間
					を設定します。
SoftwareTrigger	Implemented	0x207040	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x20702C	16	R	[0] : Inactive
		~0x207038			[8] : Impulse
	Value	0x20705C	4	R/W	ソフトウェアトリガを実行します。

● TeliCamSDK 制御

Camera feature API

専用の API を使用してトリガ動作を制御します。

API 名	説明
GetCamTriggerMode	TriggerMode を取得します。
SetCamTriggerMode	TriggerMode を設定します。
GetCamTriggerSequence	TriggerSequence を取得します。
SetCamTriggerSequence	TriggerSequence を設定します。
GetCamTriggerSource	TriggerSource を取得します。
SetCamTriggerSource	TriggerSource を設定します。
GetCamTriggerAdditionalParameterMinMax	Bulk モード時の露光回数の最小値と最大値を取得します。
GetCamTriggerAdditionalParameter	Bulk モード時の露光回数を取得します。
SetCamTriggerAdditionalParameter	Bulk モード時の露光回数を設定します。
GetCamTriggerDelayMinMax	遅延時間の最小値と最大値を取得します。
GetCamTriggerDelay	遅延時間を取得します。
SetCamTriggerDelay	遅延時間を設定します。
ExecuteCamSoftwareTrigger	Software Trigger を実行します。

1.トリガ動作モードを切り替えます。

SetCamTriggerMode 関数によって TriggerMode を設定します。

2.露光制御モードを切り替えます。

SetCamTriggerSequence 関数によって TriggerSequence を設定します。

3.トリガソースを切り替えます。

SetCamTriggerSource 関数によってTriggerSourceを設定します。

4.ハードウェアトリガの有効エッジを選択します。

ハードトリガの極性は SetCamLineInverter で決定されます。

DigitallOControl'のSetCamLineInverter'の項目も参照してください。

5.露光回数を設定します。(Bulk モード時)

SetCamTriggerAdditionalParameter 関数によって TriggerAdditionalParameter を設定します。

6.トリガディレイを設定します。

SetCamTriggerDelay 関数によって TriggerDelay を設定します。

7.映像ストリームをキャプチャします。

画像のキャプチャ開始/停止の方法は AcquisitionControl と同じです。

AcquisitionControlの項目も参照してください。

TeliCamSDK インストールフォルダ内の[TeliCamAPI Library manual]の

[Camera streaming functions]と[GrabStreamSimple]サンプルコードを参照してください。

8.ソフトウェアトリガによって映像を取得します。

ExecuteCamSoftwareTrigger 関数によってSoftwareTrigger モードでソフトウェアトリガを 実行します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用してトリガ動作を制御します。

1.TriggerModeによってトリガ動作モードを有効にします。

設定値は Enumeration 型で下記のとおりです。

Integer	String
O (※)	Off
1	On

※ 出荷設定

2.TriggerSequence によって露光時間の制御モードを選択します。 設定値は Enumeration 型で下記のとおりです。

Integer	String		
O (※)	TriggerSequenceO		
1	TriggerSequence1		
6	TriggerSequence6		

※ 出荷設定

3. TriggerSource によってトリガソースを選択します。

設定値は Enumeration 型で下記のとおりです。

Integer	String		
O (※)	LineO		
2	Line2		
64	Software		

[※] 出荷設定

4. TriggerActivation によってハードウェアトリガの有効エッジを選択します。

ハードトリガの極性は SetCamLineInverter で決定されます。

DigitallOControl'のSetCamLineInverter'の項目も参照してください。

5.TriggerAdditionalParameterによって露光回数を設定します。(Bulk モード時)

6.TriggerDelay によってトリガディレイを設定します。

7.映像ストリームのキャプチャします

画像のキャプチャ開始/停止の方法は AcquisitionControl と同じです。

AcquisitionControlの項目も参照してください。

TeliCamSDK インストールフォルダ内の[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]サンプルコードを参照してください。

8. TriggerSoftware によって Software Trigger モードでソフトウェアトリガを実行します。

9.映像を受信します。

10.映像ストリームのストップ/クローズ。

// GenlCam node handle CAM_NODE_HANDLE hMode = NULL; CAM_NODE_HANDLE hSequence = NULL; CAM_NODE_HANDLE hSource = NULL; CAM_NODE_HANDLE hAdditionalParameter = NULL; CAM_NODE_HANDLE hDelay = NULL; CAM_NODE_HANDLE hTriggerSoftware = NULL; // Retrieve GenlCam node. Nd_GetNode(s_hCam, "TriggerMode", &hMode); Nd_GetNode(s_hCam, "TriggerSequence", &hSequence); Nd_GetNode(s_hCam, "TriggerSource", &hSource); Nd_GetNode(s_hCam, "TriggerAdditionalParameter", &hAdditionalParameter); Nd_GetNode(s_hCam, "TriggerDelay", &hDelay); Nd_GetNode(s_hCam, "TriggerSoftware", &hTriggerSoftware); // 1. Select a trigger mode by 'TriggerMode'. Nd_SetEnumStrValue(s_hCam, hMode, "On"); // 2. Select a trigger sequence of random trigger shutter by 'TriggerSequence'. Nd_SetEnumStrValue(s_hCam, hSequence, "TriggerSequence6"); // Bulk mode // 3. Select a trigger source of random trigger shutter by 'TriggerSource'. Nd_SetEnumStrValue(s_hCam, hSource, "Software"); // Software // 4.Select a trigger activation of hardware trigger by 'LineInverterAll'. // -- not applicable for Software Trigger // 5.Set the number of frames to exposure in Bulk mode by 'TriggerAdditionalParameter'. Nd_SetIntValue(s_hCam, hAdditionalParameter, 3); // 3 frames // 6.Set a trigger delay by 'TriggerDelay'. Nd SetFloatValue(s hCam, hDelay, 1000.0); // 1ms // 7.0pen and Start image stream. // 7.1.Open Stream s hStrmEvt = CreateEvent(NULL, FALSE, FALSE, NULL); Strm_OpenSimple(s_hCam, &s_hStrm, &s_uilmgBufSize, s_hStrmEvt); s_pucImgBuf = (uint8_t *)Virtua)A)loc(NULL, s_uiImgBufSize, MEM_RESERVE | MEM COMMIT, PAGE EXECUTE READWRITE); // 7.2.Stream Start Strm_Start(s_hStrm); // 8.Execute software trigger in SoftwareTrigger mode by 'TriggerSoftware'. Nd_CmdExecute(s_hCam,hTriggerSoftware); // 9.Receive Image uint32 t uiSize = s uilmgBufSize; CAM IMAGE INFO slmagelnfo; for(int i=0; i<3; i++) WaitForSingleObject(s hStrmEvt, 1000); Strm_ReadCurrentImage(s_hStrm, s_pucImgBuf, &uiSize, &sImageInfo); // 10.Stop and Close image stream. // 10.1.Stream Stop Strm_Stop(s_hStrm); // 10.2.Close Stream Strm Close(s hStrm); CloseHandle(s hStrmEvt); VirtualFree(s puclmgBuf, O, MEM RELEASE);

詳細は[TeliCamAPI Library manual]の[INode functions], [IEnumeration node functions], [ICommand node functions], [IInteger node functions]を参照してください。

Register access API

IDC2 レジスタに直接アクセスしてトリガ動作を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

1.トリガ動作モードを切り替えます。

TriggerMode を制御するために TriggerMode レジスタの Value フィールドに書き込みます。 2.露光制御モードを切り替えます。

TriggerSequence を制御するために TriggerSequence レジスタの Value フィールドに書き込みます。

3.トリガソースを切り替えます。

TriggerSourceを制御するためにTriggerSourceレジスタのValueフィールドに書き込みます。 4.ハードウェアトリガの有効エッジを選択します。

ハードトリガの極性は SetCamLineInverter で決定されます。

DigitallOControl'のSetCamLineInverter'の項目も参照してください。

5.露光回数を設定します。(Bulk モード時)

TriggerAdditionalParameter を制御するために TriggerAdditionalParameter レジスタの Value フィールドに書き込みます。

6.トリガディレイを設定します。

TriggerDelay を制御するために TriggerDelay レジスタの Value フィールドに書き込みます。 7.映像ストリームのオープン/スタート。

画像のキャプチャ開始/停止の方法は AcquisitionControl と同じです。

AcquisitionControlの項目も参照してください。

TeliCamSDK インストールフォルダ内の[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]サンプルコードを参照してください。

8.ソフトウェアトリガによって映像を取得します。

SoftwareTrigger を制御するために SoftwareTrigger レジスタの Value フィールドに[8]を書き込みます。

9.映像を受信します。

10.映像ストリームのストップ/クローズ。

uint32_t dat;

// 1. Select a trigger mode by 'TriggerMode'. dat = 1; Cam_WriteReg(s_hCam, 0x20703C, 1, &dat); // TriggerMode = On // 2. Select a trigger sequence of random trigger shutter by 'TriggerSequence'. dat = 6; Cam_WriteReg(s_hCam, 0x20705C, 1, &dat); // TriggerSequence6 (Bulk mode) // 3. Select a trigger source of random trigger shutter by 'TriggerSource'. dat = 64; Cam_WriteReg(s_hCam, 0x20707C, 1, &dat); // Software // 4.Select a trigger activation of hardware trigger by 'LinelnverterAll'. // -- not applicable for Software Trigger // 5.Set the number of frames to exposure in Bulk mode by 'TriggerAdditionalParameter'. dat = 3; Cam_WriteReg(s_hCam, 0x20709C, 1, &dat); // 3 frames // 6.Set a trigger delay by 'TriggerDelay'. // TriggerDelay = 1000.0us (Raw value = 60000) dat = 60000; Cam_WriteReg(s_hCam, 0x2070BC, 1, &dat); // 1ms // 7.0pen and Start image stream. // 7.1.Open Stream s_hStrmEvt = CreateEvent(NULL, FALSE, FALSE, NULL); Strm_OpenSimple(s_hCam, &s_hStrm, &s_uilmgBufSize, s hStrmEvt); s_puclmgBuf = (uint8_t *)VirtualAlloc(NULL, s_uilmgBufSize, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE); // 7.2.Stream Start Strm_Start(s_hStrm); // 8.Execute software trigger in SoftwareTrigger mode by 'SoftwareTrigger'. dat = 8; Cam_WriteReg(s_hCam, 0x2070DC, 1, &dat); // SoftwareTrigger // 9.Receive Image uint32 t uiSize = s uilmgBufSize; CAM IMAGE INFO simageinfo; for(int i=0; i<3; i++) WaitForSingleObject(s_hStrmEvt, 1000); Strm_ReadCurrentImage(s_hStrm, s_pucImgBuf, &uiSize, &slmagelnfo); // 10.Stop and Close image stream. 11 10.1.Stream Stop Strm_Stop(s_hStrm); 10.2.Close Stream 11 Strm_Close(s_hStrm); CloseHandle(s_hStrmEvt); VirtualFree(s_puclmgBuf, O, MEM_RELEASE);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小値/最大値

TriggerAdditional Parameter	Raw 值 = 絶対値(Float)
最小値	0
最大値	255
初期値	0

TriggerDelay	Raw 值	絶対値(Float)	
最小値	0	0.0 [us]	
最大値	25000000	2000000.0 [us]	
初期値	0	0.0 [us]	
式	絶対値 [us] = Raw 値 / 125		

● 備考

- ・ソフトウェアトリガ動作時の TriggerSoftware 実行~映像取得の遅延時間は不定となります。
- •BUシリーズには2つのハードウェアトリガトリガソースがあります。

I/O 入出力信号仕様の項目も参照してください。

TriggerSource	説明	
LineO (%)	I/O コネクタ:4 pin, LVTTL High Level 2.0 to 24.0V	
Line2	I/O コネクタ:1 pin, 5V CMOS High Level 4.0V to 5.0V	

※ 出荷設定

- TriggerDelay はハードウェアトリガとソフトウェアトリガの両方に適用されます。
- TriggerAdditionalParameter レジスタ設定は、Bulk モード時のみ有効です。

ExposureTime

ExposureTime はイメージサンサが光にさらされる(露出する)時間を制御します。

制御方式として、任意の露光時間を設定するマニュアル露光時間制御(MANUAL)、電子シャッタ機能を OFF する NoSpecify モードがあります。

また、マニュアル露光時間制御(MANUAL)時に高速露光時間設定が可能な短時間露光モード (ShortExposureMode)も有しています。

- NoSpecify : AcquisitionFrameRate によるフレームレート設定の露光時間で動作します。
- Manual : レジスタに設定した任意の露光時間で動作します。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
ExposureTime	IFloat	4	R/W	Manual 動作時の露光時間を設定します。

● IIDC2 レジスタ

レジス夕名	Field	Address	Length Byte / [bit]	Access	説明
ExposureTime	Implemented	0x204020	[31]	R	この機能が有効かどうかを返します。
	Control	0x204028	4	R/W	[O]: NoSpecify
					[1]. Wanuai
	Mult	0x20402C	4	R	級対使 $[aaa] = Paaa * (Mult / Div)$
	Div	0x204030	4	R	NEAULE [Sec] - Navv ↑ (Wight / Div)
	Min	0x204034	4	R	露光時間の最小値を返します。
	Max	0x204038	4	R	露光時間の最大値を返します。
	Value	0x20403C	4	R/W	Manual動作時の露光時間を設定します。
ShortExposureMode	Implemented	0x204380	[31]	R	この機能が有効かどうかを返します。
		0x20438C	4	R	[O]: Off
	LISTUTElements				[1]: On
	Value	0x20439C	4	R/W	短時間露光モードの ON/OFF を制御します。

● TeliCamSDK 制御

Camera feature API

専用の API を使用して Exposure Time を制御します。

API名	説明
GetCamExposureTimeMinMax	露光時間の最小値と最大値を取得する。
GetCamExposureTime	露光時間を取得する。
SetCamExposureTime	露光時間を設定する。
GetCamExposureTimeControl	露光時間の制御モードを取得します。
SetCamExposureTimeControl	露光時間の制御モードを設定します。
GetCamShortExposureMode	短時間露光モードの値を取得します。
SetCamShortExposureMode	短時間露光モードの値を設定します。

ExposureTimeControl パラメータ	説明
CAM_EXPOSURE_TIME_CONTROL_NO_SPECIFY	NoSpecify
CAM_EXPOSURE_TIME_CONTROL_MANUAL	Manual

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して Exposure Time を制御します。

♦ExposureTime

ExposureTime によって露光時間を設定します。

// GenlCam node handle
CAM_NODE_HANDLE hMode = NULL;
CAM_NODE_HANDLE hSelector = NULL;
CAM_NODE_HANDLE hSource = NULL;

// GenlCam node handle CAM_NODE_HANDLE hNode = NULL;

// ExposureTime = 1000us float64_t dExposureTime = 1000.0;

// Retrieve GenlCam node. Nd_GetNode(s_hCam, "ExposureTime", &hNode);

// Set ExposureTime Value Nd_SetFloatValue(s_hCam, hNode, dExposureTime);

Register access API

IIDC2 レジスタに直接アクセスして Exposure Time を制御します。

API 名	説明		
Cam_ReadReg	値を読み出します。		
Cam_WriteReg	値を書き込みます。		

ExposureTime

ExposureTime レジスタの Value フィールドに書き込みます。

// ExposureTime = 1000us (Raw value = 60000)
uint32_t uiExposureTimeRaw = 60000;

// Set ExposureTime Value

Cam_WriteReg(s_hCam, 0x20403C, 1, &uiExposureTimeRaw);

♦ ShortExposureMode

ShortExposureMode レジスタの Value フィールドに書き込みます。

// Set ShortExposureMode ON uint32_t dat = 1; Cam_WriteReg(s_hCam, 0x20439C, 1, &dat);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小値/最大値

ShortExposureMode=OFF 時

ExposureTim	е	BU502MG/BU502MCF	BU805MG/BU805MCF	BU1208MG/BU1208MCF	
夏小店	Raw 値	600	660	840	
取小唱	絶対値	10 [us]	11 [us]	14 [us]	
最大値 絶対値		96000000			
		16000000 [us]			
如期結	Raw 値	720000	1140000	1680000	
初期恒絶対値		12000 [us] 19000 [us] 28000 [us]			
式			絶対値 [us] = Raw 値 / 60		

ShortExposureMode=ON 時

ExposureTime		BU502MG/BU502MCF	BU805MG/BU805MCF	BU1208MG/BU1208MCF	
B.U.G. Raw 值		19			
取小唱	絶対値	1.024 [us]			
最大値	Raw 値	46			
	絶対値	2.47 [us]			
Raw 値		46			
	絶対値	2.47 [us]			
式		絶対値 [s] = Raw 値 * 53 / 983850009			

お願い:短時間露光モード使用時における注意点

・ShortExposureMode を使用しますと画質が悪化する場合があります。また、実際の露光時間について個体差や使 用環境(使用温度など)によりバラつくことがあります。ShortExposureMode を使用する場合は、機械・装置全体 で最終的な画質の確認をお客様にて実施していただくようお願いいたします。

・画面上部と下部の明るさが異なる現象が発生する場合がありますが、CMOS イメージセンサの特性であり故障ではありませんのでご注意ください。

● 備考

・映像ストリーム出力中は ShortExposureMode レジスタ設定変更が無効となります。

DigitallOControl

I/O コネクタ汎用出力ピンから出力する信号を選択することができます。また出力信号の極性を切り替えることができます。出力信号の使用は下図のとおりです。

GPIO 内部回路構成

各信号の概念(全体図)

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
LineMode	lEnumeration	4	R/W	LineSelector で選択した LINE の入出力を選択します。
LineModeA11	llnteger	4	R/W	LINE の入出力を選択します。
Linelnverter	lBoolean	4	R/W	LineSelector で選択した LINE の極性を選択します。
LineInverterAll	llnteger	4	R/W	LINE の極性を選択します。
LineStatus	IBoolean	4	R	LineSelector で選択した LINE の状態を返します。
LineStatusAll	llnteger	4	R	LINE の状態を返します。
UserOutputValue	lBoolean	4	R/W	LineSelector で選択した LINE のユーザー設定を選択します。
UserOutputValueAll	llnteger	4	R/W	LINE 出力のユーザー設定値を設定します。
LineSelector	lEnumeration	4	R/W	LINE を選択します。
LineSource	lEnumeration	4	R/W	LINE の信号種類を選択します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
LineModeA11	Implemented	0x209020	[31]	R	この機能が有効かどうかを返します。
	BitWritable	0x20902C	4	R	[0]: LineO
					[1]: Line1
					[2]: Line2
	Value	0x209030	4	R/W	LINE の入出力を選択します。
LinelnverterAll	Implemented	0x209040	[31]	R	この機能が有効かどうかを返します。
	Value	0x209050	4	R/W	LINEの極性を選択します。入出力両方に反映します。
LineStatusAll	Implemented	0x209060	[31]	R	この機能が有効かどうかを返します。
	Value	0x209070	4	R	LINE の状態を返します。
UserOutputValueAll	Implemented	0x209080	[31]	R	この機能が有効かどうかを返します。
	Value	0x209090	4	R/W	LINE 出力のユーザー設定値を設定します。
LineSelector	Implemented	0x2090A0	[31]	R	この機能が有効かどうかを返します。
	Value	0x2090BC	4	R/W	LINE を選択します。
LineSource	Implemented	0x2090C0	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x2090CC	4	R	[0] : Off
					[32] : UserOutput
					[64] : TimerOActive
					[99] : AcquisitionActive
					[106] : FrameTriggerWait
					[107] : FrameActive
					[115] : FrameTransferActive
					[123] : ExposureActive
	Value	0x2090DC	4	R/W	LINE の信号種類を選択します。

93 / 157 Copyright © 2023 - 2024 Toshiba Teli Corporation, All rights reserved.

● TeliCamSDK 制御

Camera feature API

専用の API を使用して DigitallOControl を制御します。

API名	説明	
GetCamLineModeAll	LineMode の値を取得します。	
GetCamLineInverterAll	LineInverter の値を取得します。	
SetCamLineInverterA11	LineInverter に値を設定します。	
GetCamLineStatusAll	LineStatus の値を取得します。	
GetCamUserOutputValueAll	UserOutput の値を取得します。	
SetCamUserOutputValueAll	UserOutput に値を設定します。	
GetCamLineSource	LineSource の値を取得します。	
SetCamLineSource	LineSource に値を設定します。	

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して DigitallOControl を制御します。

◆LineModeAll

LineModeAll によって各 Line の入出力を選択します。

設定値は Integer 型で各 bit が各 Line に対応しています (bitO=LineO(不変), bit1=Line1(不変 bit2=Line2)。

bit value	I/O Direction
0	入力
1	出力

LineModeA11	bit value	I/O Direction	
Value	[Line2] [Line1] [Line0]	[Line2] [Line1] [Line0]	
0	(市田	কন	
1	- 使用个可		
2(**)	[O] [1] [O]	[in] [out] [in]	
3			
4	使用	不可	
5			
6	[1] [1] [O]	[out] [out] [in]	
7	使用	不可	

※ 出荷設定

◆LineInverterAll

LineInverterAll によって各 Line の極性を選択します。

設定値は Integer 型で各 bit が各 Line に対応しています(bitO=LineO, bit1=Line1, bit2=Line2)。

bit value	Inverter
0	False (invertなし)
1	True (invert あり)

LinelnverterAll	bit value	Inverter
Value	[Line2] [Line1] [Line0]	[Line2] [Line1] [Line0]
O (※)	[0] [0] [0]	[off] [off] [off]
1	[O] [O] [1]	[off] [off] [on]
2	[O] [1] [O]	[off] [on] [off]
3	[O] [1] [1]	[off] [on] [on]
4	[1] [O] [O]	[on] [off] [off]
5	[1] [O] [1]	[out [off] [on]
6	[1] [1] [O]	[on] [on] [off]
7	[1] [1] [1]	[on] [on] [on]

※ 出荷設定

◆LineStatusAll

LineStatusAll によって各信号ラインの状態を取得します。

設定値は Integer 型で各 bit が各 Line に対応しています(bitO=LineO, bit1=Line1, bit2=Line2)。

bit value	Line Status
0	False (Low)
1	True (High)

LineStatusAll	bit value	Line Status
Value	[Line2] [Line1] [Line0]	[Line2] [Line1] [Line0]
0	[O] [O] [O]	[low] [low] [low]
1	[O] [O] [1]	[low] [low] [high]
2	[O] [1] [O]	[low] [high] [low]
3	[0] [1] [1]	[low] [high] [high]
4	[1] [O] [O]	[high] [low] [low]
5	[1] [O] [1]	[high] [low] [high]
6	[1] [1] [O]	[high] [high] [low]
7	[1] [1] [1]	[high] [high] [high]

♦UserOutputValueAll

UserOutputValueAll によって Line 出力のユーザー設定値を設定します。

設定値は Integer 型で各 bit が各 Line に対応しています(bitO=LineO(不変), bit1=Line1, bit2=Line2)。

bit value	Output
0	False (Low)
1	True (High)

UserOutputValueAll	bit value	Output	
	[Line2] [Line1]	[Line2] [Line1]	
O (※)		Dowl Dowl	
1	[0] [0]	[IOW] [IOW]	
2			
3	[0] [1]		
4	[1] [0]	[high] [low]	
5	[1][0]	[nigh] [iow]	
6	[4] [4]		
7		[nign] [nign]	

※ 出荷設定

♦LineSelector

LineSelector によって出力する I/O ラインを選択します。 設定値は Enumeration 型で下記のとおりです。

Integer	String
1	Line1
2	Line2

♦LineSource

LineSource によって出力信号の種類を選択します。

設定値は Enumeration 型で下記のとおりです。

Integer	String	説明
0	Off	汎用出力は無効です。
32	UserOutput	UserOutputValue にて設定した値を出力します。
64	TimerOActive	ストロボ制御用信号として使用できます。トリガ入力からの遅延量と幅を設定できます。
99	AcquisitionActive	AcquisitionStart 状態であることを示す信号です。
106	FrameTriggerWait	ランダムトリガシャッタ時に、トリガ待ち受け期間であることを示す信号です。
107	FrameActive	露光開始から CMOS 転送完了までの期間です。
115	FrameTransferActive	映像をUSB バスに転送している期間です。
123	ExposureActive	露光を行っている期間です。

// GenlCam node handle CAM_NODE_HANDLE hMode = NULL; CAM_NODE_HANDLE hSelector = NULL; CAM_NODE_HANDLE hSource = NULL;

// Retrieve GenlCam node. Nd_GetNode(s_hCam, "LineModeAll", &hMode); Nd_GetNode(s_hCam, "LineSelector", &hSelector); Nd_GetNode(s_hCam, "LineSource", &hSource);

// Line2/Line1 = output, Line0 = input int64_t Mode = 6; Nd_SetIntValue(s_hCam, hMode, Mode);

// Line1 = ExposureActive
Nd_SetEnumStrValue(s_hCam, hSelector, "Line1");
Nd_SetEnumStrValue(s_hCam, hSource, "ExposureActive");

// Line2 = FrameTransferActive Nd_SetEnumStrValue(s_hCam, hSelector, "Line2"); Nd_SetEnumStrValue(s_hCam, hSource, "FrameTransferActive");

詳細は[TeliCamAPI Library manual]の[INode functions], [IInteger node functions], [IEnumeration node functions]を参照してください。

Register access API

IIDC2 レジスタに直接アクセスして DigitalIOControl を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

◆LineModeAll

LineModeAll レジスタの Value フィールドに書き込みます。

◆LinelnverterAll

LineInverterAll レジスタの Value フィールドに書き込みます。

LineStatusAll

LineStatusAll レジスタの Value フィールドに書き込みます。

◆UserOutputValueAll

UserOutputAll レジスタの Value フィールドに書き込みます。

♦LineSelector

LineSelector レジスタの Value フィールドに書き込みます。

♦LineSource

LineSource レジスタの Value フィールドに書き込みます。

// Line2/Line1 = output, LineO = input uint32 t uiMode = 6; Cam_WriteReg(s_hCam, 0x209030, 1, &uiMode); // Set Value uint32_t uiSelector; uint32_t uiSource; uiSelector = 1; // Line1 uiSource = 123; // ExposureActive Cam_WriteReg(s_hCam, 0x2090BC, 1, &uiSelector); Cam_WriteReg(s_hCam, 0x2090DC, 1, &uiSource); // Line2 uiSelector = 2; uiSource = 115; // FrameTransferActive Cam_WriteReg(s_hCam, 0x2090BC, 1, &uiSelector); Cam_WriteReg(s_hCam, 0x2090DC, 1, &uiSource);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

Note

- LineO は入力専用です。
- Line1は出力専用です。
- ・Line2は入出力変更可能です。出荷設定は入力です。
- ・LineSource: TimerOActive 信号の動作設定については TimerControl の項目を参照してください。

AntiGlitch/AntiChattering

アンチグリッチとアンチチャタリングはノイズや不安定なデジタル入力(トリガ信号)にフィルタをかける機能です。

アンチグリッチ回路は、トリガ信号のデジタル積分を行います。インパルス性ノイズを取り除くことに有 効です。

アンチチャタリング回路は、トリガの誤動作を防止するためにエッジを受け付けない時間を設定します。 不安定な論理状態やスイッチチャタリングを取り除くことに有効です。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
AntiGlitch	IFloat	4	R/W	デジタル入力信号の積分時間(絶対値)を設定します。
AntiChattering	IFloat	4	R/W	デジタル入力信号のエッジを受け付けない時間(絶対値)を設定します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
AntiGlitch	Implemented	0x21F3C0	[31]	R	この機能が有効かどうかを返します。
	Mult	0x21F3CC	4	R	絶対症 [acol = Pow * (Mult / Div)
	Div	0x21F3D0	4	R	形对喧 [Sec] - Navy * (Ividit / Div)
	Min	0x21F3D4	4	R	デジタル入力信号積分時間の最小値を設定します。
	Max	0x21F3D8	4	R	デジタル入力信号積分時間の最大値を設定します。
	Value	0x21F3DC	4	R/W	デジタル入力信号の積分時間(絶対値)を設定します。
AntiChattering	Implemented	0x21F3E0	[31]	R	この機能が有効かどうかを返します。
	Mult	0x21F3EC	4	R	後対広 [acc] = Douty (Mult / Du)
	Di∨	0x21F3F0	4	R	mexjile [Sec] - Maw * (Mulit / Div)
	Min	0x21F3F4	4	R	デジタル入力信号のエッジを受け付けない時間の最小値を設定
					します。
	Max	0x21F3F8	4	R	デジタル入力信号のエッジを受け付けない時間の最大値を設定
					します。
	Value	0x21F3FC	4	R/W	デジタル入力信号のエッジを受け付けない時間(絶対値)を設定
					します。

● TeliCamSDK 制御

GenlCam function API

専用の API を使用して AntiGlitch/AntiChattering を制御します。

AntiGlitch/AntiChattering

1.AntiGlitch によってデジタル入力信号の積分時間(絶対値)を設定します。

2.AntiChatteringによってデジタル入力信号のエッジを受け付けない時間(絶対値)を設定します。

// GenlCam node handle CAM_NODE_HANDLE hGlitch = NULL; CAM_NODE_HANDLE hChattering = NULL; // AntiGlitch = 1.0[us], AntiChattering = 10.0[us] float64_t dGlitch = 0.000001; float64_t dChattering = 0.000010; // Retrieve GenlCam node. Nd_GetNode(s_hCam, "AntiGlitch", &hGlitch); Nd_GetNode(s_hCam, "AntiChattering", &hChattering); // Set Value Nd_SetFloatValue(s_hCam, hGlitch, dGlitch); Nd_SetFloatValue(s_hCam, hChattering, dChattering);

詳細は[TeliCamAPI Library manual]の[INode functions], [IFloat node functions]を参照してく ださい。

Register access API

IDC2 レジスタに直接アクセスして AntiGlitch/AntiChattering を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

AntiGlitch/AntiChattering

1.AntiGlitch レジスタの Value フィールドに書き込みます。

2.WAntiChattering レジスタの Value フィールドに書き込みます。

// AntiGlitch = 1.0[us] (Raw value = 100) // AntiChattering = 10.0[us] (Raw value = 1250) uint32_t uiAntiGlitchRaw = 100; uint32_t uiAntiChatteringRaw = 1250; // Set Value Cam_WriteReg(s_hCam, 0x21F3DC, 1, &uiAntiGlitchRaw); Cam_WriteReg(s_hCam, 0x21F3FC, 1, &uiAntiChatteringRaw);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小値/最大値

AntiGlitch	Raw 值	絶対値(Float)		
最小値	9	0.09 [us]		
最大値	2000000	20000 [us]		
初期値	9	0.09 [us]		
 	絶対値 [us] = Raw 値 / 100			

AntiChattering	Raw 値	絶対値(Float)	
最小値	250	2 [us]	
最大値	250000	2000 [us]	
初期値	250	2 [us]	
式	絶対値 [us] = Raw 値 / 125		

TimerControl

TimerOActive 信号は露光タイミングを基準にレジスタ設定にて生成することができます。 ExposureActive 信号とタイミングを合わせることで、ストロボ等の照明機器の制御用信号として使用で きます。

TimerOActive 信号使用例

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
TimerSelector	lEnumeration	4	R	選択されているタイマー名を返します。
TimerDelay	IFloat	4	R/W	TimerOActive 信号の遅延量を設定します。
TimerDuration	IFloat	4	R/W	TimerOActive 信号の幅を設定します。
TimerTriggerSource	lEnumeration	4	R/W	TimerOActive 信号の基準信号を選択します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
TimerSelector	Implemented	0x20A020	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x20A02C	4	R	[0] : TimerO
	Value	0x20A03C	4	R/W	選択されているタイマー名を返します。
TimerDelay	Implemented	0x20A040	[31]	R	この機能が有効かどうかを返します。
	Mult	0x20A04C	4	R	
	Div	0x20A050	4	R	™xyie [sec] - naw * (iviuit / Div)
	Min	0x20A054	4	R	TimerOActive 信号遅延量の最小値を設定します。
	Max	0x20A058	4	R	TimerOActive 信号遅延量の最大値を設定します。
	Value	0x20A05C	4	R/W	TimerOActive 信号の遅延量を設定します。
TimerDuration	Implemented	0x20A060	[31]	R	この機能が有効かどうかを返します。
	Mult	0x20A06C	4	R	後対応 [acc] = Devue (Mult / Div)
	Div	0x20A070	4	R	₩XJ10 [Sec] - Haw * (Mult / Div)
	Min	0x20A074	4	R	TimerOActive 信号幅の最小値を返します。
	Max	0x20A078	4	R	TimerOActive 信号幅の最大値を返します。
	Value	0x20A07C	4	R/W	TimerOActive 信号の幅を設定します。
TimerTriggerSource	Implemented	0x20A080	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x20A08C	4	R/W	[0] : Off
					[32] : LineO
					[104] : FrameTrigger
					[124] : ExposureStart
	Value	0x20A09C	4	R/W	TimerOActive 信号の基準信号を選択します。

● TeliCamSDK 制御

Camera feature API

専用の API を使用して TimerControl を制御します。

API 名	説明
GetCamTimerDelayMinMax	TimerDelay の最小値と最大値の値を取得します
GetCamTimerDelay	TimerDelay の値を取得します。
SetCamTimerDelay	TimerDelay に値を設定します。
GetCamTimerDurationMinMax	TimerDurationの最小値と最大値の値を取得します
GetCamTimerDuration	TimerDuration の値を取得します。
SetCamTimerDuration	TimerDuration に値を設定します。
GetCamTimerTriggerSource	TimerTriggerSourceの値を取得します。
SetCamTimerTriggerSource	TimerTriggerSource に値を設定します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions を参照してください。
GenlCam function API

GeniCam API を使用して TimerControl を制御します。

TimerDelay/TimerDuration/TimerTriggerSource

- 1. TimerDelay によって TimerOActive 信号の遅延量を設定します。
- 2. TimerDuration によって TimerOActive 信号の幅を設定します。
- 3. TimerTriggerSource によって TimerOActive 信号の基準信号を選択します。

設定値は Enumeration 型で下記のとおりです。

Integer	String	説明
0	Off	Timer 出力は無効です。
32	LineO	LineO 入力より Timer がスタートします。
104	FrameTrigger	トリガ受付より Timer がスタートします。
124	ExposureStart	露光開始より Timer がスタートします。

// GenlCam node handle CAM_NODE_HANDLE hDelay = NULL; CAM_NODE_HANDLE hDuration = NULL; CAM_NODE_HANDLE hSource = NULL;
// TimerDelay = 1000.0[us], TimerDuration = 2000.0[us] float64_t dDelay = 1000.0; float64_t dDuration = 2000.0;
// Retrieve GenlCam node. Nd_GetNode(s_hCam, "TimerDelay", &hDelay); Nd_GetNode(s_hCam, "TimerDuration", &hDuration); Nd_GetNode(s_hCam, "TimerTriggerSource", &hSource);
// 1.Sets the delay of TimerOActive signal. Nd_SetFloatValue(s_hCam, hDelay, dDelay);
// 2.Sets the dulation of TimerOActive signal. Nd_SetFloatValue(s_hCam, hDuration, dDuration);
// 3.Selects the source of TimerOActive pulse to start. Nd_SetEnumStrValue(s_hCam, hSource, "ExposureStart");

詳細は[TeliCamAPI Library manual]の[INode functions], [IFloat node functions], [IEnumeration node functions]を参照してください。

Register access API

IIDC2 レジスタに直接アクセスして TimerControl を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

TimerDelay / TimerDuration / TimerTriggerSource

- 1.TimerDelay レジスタの Value フィールドに書き込みます。
- 2.TimerDuration レジスタの Value フィールドに書き込みます。
- 3.TimerTriggerSource レジスタの Value フィールドに書き込みます。

// TimerDelay = 1000.0[us] (Raw value = 125000)
// TimerDuration = 2000.0[us] (Raw value = 250000)
// TimerTriggersource = "ExposureStart"
uint32_t uiTimerDelayRaw = 125000;
uint32_t uiTimerDurationRaw = 250000;
uint32_t uiTimerTriggerSource = 124;
// Set Value
Cam_WriteReg(s_hCam, 0x20A05C, 1, &uiTimerDelayRaw);
Cam_WriteReg(s_hCam, 0x20A07C, 1, &uiTimerDurationRaw);
Cam_WriteReg(s_hCam, 0x21F27C, 1, &uiTimerTriggerSource);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してださい。

◆最小値/最大値

TimerDelay TimerDuration	Raw 値	絶対値(Float)
最小値	0	O [us]
最大値	25000000	2000000 [us]
初期値	0 0.00 [us]	
式		

● 備考

TimerTriggerSourceの動作は以下のとおりとなっております。

- ・LineOActive はハードウェアトリガ入力のみ有効です。FrameTriggerError 時にも反応します。
- •FrameTrigger はハードウェアトリガ、ソフトウェアトリガ入力ともに有効です。FrameTriggerError 時には反応しません。
- •ExposureStart はハードウェアトリガ、ソフトウェアトリガ入力ともに有効です。FrameTriggerError 時には反応しません。
- ・TriggerDelayが設定されている場合、TriggerDelay+TimerDelay[us]の遅延が発生します。

<u>Gain</u>

ゲインを設定することで、映像輝度の倍率を変更することができます。制御方式としてマニュアルゲイン (MANUAL)が利用可能です。

ゲイン

ゲイン設定時の入力輝度と出力輝度の関係は下記のとおりです。

${\bullet}$	GenlCam	ノー	ド
-------------	---------	----	---

名称	Interface	Length Byte / [bit]	Access	説明
Gain	lFloat	4	R/W	ゲイン(絶対値)を設定します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
Gain	Implemented	0x204060	[31]	R	この機能が有効かどうかを返します。
	Control	0x204068	4	R/W	[1]: Manual
	Mult	0x20406C	4	R	
	Di∨	0x204070	4	R	他以道 [db] = Raw * (Mult / Div)
	Min	0x204074	4	R	ゲインの最小値を返します。
	Max	0x204078	4	R	ゲインの最大値を返します。
	Value	0x20407C	4	R/W	ゲイン(絶対値)を設定します。

Camera feature API

専用の API を使用して Gain を制御します。

API 名	説明	
GetCamGainMinMax	Gain の最小値と最大値を取得します。	
GetCamGain	Gain の値を取得します。	
SetCamGain	Gain に値を設定します。	

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して Gain を制御します。.

♦Gain

Gain を制御するには IFloat インターフェースを使用します。

// GenlCam node handle CAM_NODE_HANDLE hNode = NULL; // Gain = 6.0dB float64_t dGain = 6.0; // Retrieve GenlCam node. Nd_GetNode(s_hCam, "Gain", &hNode); // Set Gain Value Nd_SetFloatValue(s_hCam, hNode, dGain);

詳細は[TeliCamAPI Library manual]の[INode functions], [IFloat node functions], [IFloat node functions]を参照してください。

Register access API

IDC2 レジスタに直接アクセスして Gain を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

♦Gain

Gain レジスタの Value フィールドに書き込みます。

// Gain = 6.0dB (Raw value = 60) uint32_t uiGainRaw = 60; // Set Gain Value Cam_WriteReg(s_hCam, 0x20407C, 1, &uiGainRaw);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小値/最大値

Gain	Raw 值	絶対値(Float)	
最小値	0	0.00 [dB]	
最大値	360	36.00[dB]	
初期値	0	0.00 [dB]	
定	絶対値 [dB] = Raw 値 / 10		

<u>BlackLevel</u>

映像の黒レベルを設定します。映像の飽和レベルを100%として、黒レベル(画像レベルの取りうる最小値)を-25.0%~+25.0%の範囲で設定可能です。但し黒レベルを0%以下にすると、映像輝度が飽和しない場合があります。

黒レベル

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
BlackLevel	IFloat	4	R/W	黒レベル(絶対値)を設定します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
BlackLevel	Implemented	0x204040	[31]	R	この機能が有効かどうかを返します。
	Mult	0x20404C	4	R	(M:対応「9/1 - Power (Multh / Div)
	Di∨	0x204050	4	R	₩XJUE [70] - Mavv * (IVIUIE / DIV)
	Min	0x204054	4	R	黒レベルの最小値を返します。
	Max	0x204058	4	R	黒レベルの最大値を返します。
	Value	0x20405C	4	R/W	黒レベル(絶対値)を設定します。

● TeliCamSDK 制御

Camera feature API

専用の API を使用して BlackLevel を制御します。

API 名	説明
GetCamBlackLevelMinMax	BlackLevelの最小値と最大値を取得します。
GetCamBlackLevel	BlackLevelの値を取得します。
SetCamBlackLevel	BlackLevel に値を設定します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してくだ さい。

GenlCam function API

GeniCam API を使用して BlackLevel を制御します。

♦BlackLevel

BlackLevel を制御するには IFloat インターフェースを使用します。

// GenlCam node handle CAM_NODE_HANDLE hNode = NULL; // BlackLevel = 25% float64_t dBlackLevel = 25.0; // Retrieve GenlCam node. Nd_GetNode(s_hCam, "BlackLevel", &hNode); // Set BlackLevel Value Nd_SetFloatValue(s_hCam, hNode, dBlackLevel);

詳細は[TeliCamAPI Library manual]の[INode functions], [IFloat node functions]を参照してく ださい。

Register access API

IDC2 レジスタに直接アクセスして BlackLevel を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

♦BlackLevel

```
BlackLevel レジスタの Value フィールドに書き込みます。
```

```
// BlackLevel = 25% (Raw value = 256)
int32_t iBlackLevelRaw = 256; // signed
// Set BlackLevel Value
Cam_WriteReg(s_hCam, 0x20405C, 1, &iBlackLevelRaw);
```

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小値/最大値

BlackLevel	Raw 值	絶対値(Float)
最小値	-256	-25.00[%]
最大値	256	+25.00[%]
初期値	0	0.00[%]
定	絶対値 [%] = Raw	値 * 100 / 1024

出力映像に対しガンマ補正を適用します。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
Gamma	IFloat	4	R/W	ガンマ補正値の設定をします。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
Gamma	Implemented	0x204080	[31]	R	この機能が有効かどうかを返します。
	Mult	0x20408C	4	R	絶対病 - Pour * (Mult / Dia)
	Di∨	0x204090	4	R	祀刘恒 - Navv ← (IVIUIL / DIV)
	Min	0x204094	4	R	ガンマ補正値の最小値を返します。
	Max	0x204098	4	R	ガンマ補正値の最大値を返します。
	Value	0x20409C	4	R/W	ガンマ補正値の設定をします。

Control with TeliCamSDK

Camera feature API

専用の API を使用して Gamma を制御します。

API 名	説明
GetCamGammaMinMax	Gamma の最小値と最大値を取得します。
GetCamGamma	Gamma の値を取得します。
SetCamGamma	Gamma に値を設定します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して Gamma を制御します。.

♦Gamma

Gamma を制御するには IFloat インターフェースを使用します。

// GenlCam node handle CAM_NODE_HANDLE hNode = NULL; // Gamma = 0.45 float64_t dGamma = 0.45; // Retrieve GenlCam node. Nd_GetNode(s_hCam, "Gamma", &hNode); // Set Gamma Value Nd_SetFloatValue(s_hCam, hNode, dGamma);

詳細は[TeliCamAPI Library manual]の[INode functions], [IFloat node functions]を参照してください。

Register access API

IDC2 レジスタに直接アクセスして Gamma を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

♦Gamma

```
Gamma レジスタの Value フィールドに書き込みます。
```

// Gamma = 0.45 (Raw value = 45) uint32_t uiGammaRaw = 45; // Set Gamma Value Cam_WriteReg(s_hCam, 0x20409C, 1, &uiGammaRaw);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。.

◆最小値/最大値

Gamma	Raw 値	絶対値(Float)
最小値	45	0.45
最大値	100	1.00
初期値	100	1.00
式	絶対値 = Ra	w値 / 100

<u>BalanceRatio</u>

BalanceRatio の設定によりホワイトバランスゲインを調整します。 本機能はカラーモデルのみで使用可能です。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
BalanceRatioSelector	Enumeration	4	R/W	ホワイトバランスゲイン設定の対象となる要素を選択します。
BalanceRatio	IFloat	4	R/W	ホワイトバランスゲイン(倍率)を設定します。
BalanceWhiteAuto	Enumeration	4	R/W	ホワイトバランスゲイン(倍率)を自動で設定します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
WhiteBalanceR	Implemented	0x205060	[31]	R	この機能が有効かどうかを返します。
	Control	0x205068	4	R/W	[1]: Off [3]: Once
	Mult	0x20506C	4	R	後立地店「trimenen」 = Devute (MA-alt / Dira)
	Div	0x205070	4	R	ポンリ道 [times] = Haw * (IVIUIT / DIV)
	Min	0x205074	4	R	WhiteBalanceR の最小値を返します。
	Max	0x205078	4	R	WhiteBalanceR の最大値を返します。
	Value	0x20507C	4	R/W	WhiteBalanceR を設定します。
WhiteBalanceB	Implemented	0x205080	[31]	R	この機能が有効かどうかを返します。
	Control	0x205088	4	R/W	[1]: Off [3]: Once
	Mult	0x20508C	4	R	
	Div	0x205090	4	R	₩XJ1@ [UITHES] - Maw * (IVIUIL / DIV)
	Min	0x205094	4	R	WhiteBalanceB の最小値を返します。
	Max	0x205098	4	R	WhiteBalanceB の最大値を返します。
	Value	0x20509C	4	R/W	WhiteBalanceB を設定します。

Camera feature API

専用の API を使用して Control BalanceRatio and BalanceWhiteAuto を制御します。

API 名	説明	
GetCamBalanceRatioMinMax	BalanceRatio の最小値と最大値を取得する。	
GetCamBalanceRatio	BalanceRatio を取得する。	
SetCamBalanceRatio	BalanceRatio を設定する。	
GetCamBalanceWhiteAuto	BalanceWhiteAutoの設定を取得する。	
SetCamBalanceWhiteAuto	BalanceWhiteAuto を設定する。	

BalanceWhiteAuto パラメータ	説明
CAM_BALANCE_WHITE_AUTO_OFF	Off
CAM_BALANCE_WHITE_AUTO_ONCE	Adjust once

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して Control BalanceRatio and BalanceWhiteAuto を制御します。

♦BalanceRatio

- 1. BalanceRatioSelector によって設定する色成分を選択します。
 - 設定値は Enumeration 型と String 型で下記のとおりです。

Integer	String	
1	Red	
2	Blue	

2. BalanceRatio によってホワイトバランスゲインを設定します。

```
// GenlCam node handle
CAM_NODE_HANDLE hNode = NULL:
// 1.Select a color component
// Retrieve GenlCam node.
Nd_GetNode(s_hCam, "BalanceRatioSelector", &hNode);
// Select "Red"
Nd_SetEnumStrValue(s_hCam, hNode, "Red");
// 2.Set a white balance gain
// white balance R gain = x 1.0
float64_t dBalanceRatioR = 1.0;
// Retrieve GenlCam node.
Nd_GetNode(s_hCam, "BalanceRatio", &hNode);
// Set Gain Value
Nd_SetFloatValue(s_hCam, hNode, dBalanceRatioR);
```

◆BalanceWhiteAuto

BalanceWhiteAuto を制御するには Enumeration インターフェースを使用します。 設定値は Enumeration 型と String 型で下記のとおりです。

Integer	String	
1	Off	
3	Once	

// GenlCam node handle CAM_NODE_HANDLE hNode = NULL;

// Retrieve GenlCam node. Nd_GetNode(s_hCam, "BalanceWhiteAuto", &hNode);

// Set BalanceWhiteAuto = "Continuous" Nd_SetEnumStrValue(s_hCam, hNode, "Continuous");

詳細は[TeliCamAPI Library manual]の[INode functions], [IFloat node functions],

[IEnumeration node functions]を参照してください。

Register access API

IIDC2 レジスタに直接アクセスして Control BalanceRatio and BalanceWhiteAuto を制御します。

API 名	説明	
Cam_ReadReg	値を読み出します。	
Cam_WriteReg	値を書き込みます。	

♦BalanceRatio

WhiteBalanceR またはWhiteBalanceB レジスタのValue フィールドに書き込みます。.

// WhiteBalance R Gain = x 1 (Raw value = 65536) // WhiteBalance B Gain = x 1 (Raw value = 65536) uint32_t uiWhiteBalanceRRaw = 65536; uint32_t uiWhiteBalanceBRaw = 65536; // Set WhiteBalance Gain Value Cam_WriteReg(s_hCam, 0x20507C, 1, &uiWhiteBalanceRRaw); Cam_WriteReg(s_hCam, 0x20509C, 1, &uiWhiteBalanceBRaw);

♦BalanceRatioAuto

WhiteBalanceR またはWhiteBalanceBレジスタのControl フィールドに書き込みます。.

// BalanceWhiteAuto = "Once" uint32_t uiBalanceWhiteAuto = 3; // Set BalanceWhiteAuto = "Once" Cam_WriteReg(s_hCam, 0x205068, 1, &uiBalanceWhiteAuto); // Cam_WriteReg(s_hCam, 0x205088, 1, &uiBalanceWhiteAuto); // either will do

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。.

◆最小値/最大値

BalanceRatio	Raw 值	絶対値(Float)	
最小値	65536	x 1 [times]	
最大値	524287	x 8 [times]	
初期値	機器による	機器による	
五	絶対値 [times] = Raw 値 / 65536		

● 備考

BalanceWhiteAuto で選択された要素のホワイトバランスゲインは BalanceRatioR、BalanceRatioB レジスタに設定します。

お願い:ホワイトバランスゲイン可変時の画質について

ホワイトバランスゲイン設定値を上げすぎるとノイズが増加する場合があります。撮影画像の明るさを調整する場合 は、機械・装置全体で最終的な画質の確認をお客様にて実施して頂くようお願い致します。

LUTControl

映像に対して入力: 12bit, 出力: 12bit の任意の LUT を適用することが可能です。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
LUTEnable	lBoolean	4	R/W	LUT の有効 / 無効を切り替えます。
LUTIndex	llnteger	4	R/W	LUT の入力値を設定します。
LUTValue	llnteger	4	R/W	LUT の出力値を設定します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
LUTEnable	Implemented	0x206020	[31]	R	この機能が有効かどうかを返します。
	Value	0x20603C	4	R/W	LUT の有効 / 無効を切り替えます。 [O] : Off [1] : On
LUTValueAll	Implemented	0x2FFFDC	[31]	R	この機能が有効かどうかを返します。
	Value[0]	0x300000	4	R/W	LUT の出力値を設定します。
	Value[1]	0x300004	4	R/W	LUT の出力値を設定します。
	Value[2]	0x300008	4	R/W	LUT の出力値を設定します。
	Value[4095]	0x303FFC	4	R/W	LUT の出力値を設定します。

Camera feature API

専用の API を使用して LUT を制御します。

API 名	説明	
GetCamLUTEnable	LUT の有効/無効を取得します。	
SetCamLUTEnable	LUT の有効/無効を設定します。	
GetCamLUTValue	LUT の値を取得します。	
SetCamLUTValue	LUT の値を設定します。	

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してくだ さい。

GenlCam function API

GeniCam API を使用して LUT を制御します。

♦LUT

1.LUTIndex によって LUT の入力値を設定します。

2.LUT Value によって LUT の出力値を設定します。

3.LUTEnable によって LUT を有効にします。

// GenlCam node handle CAM_NODE_HANDLE hIndex = NULL; CAM_NODE_HANDLE hValue = NULL; CAM_NODE_HANDLE hEnable = NULL;
// Retrieve GenlCam node. Nd_GetNode(s_hCam, "LUTIndex", &hIndex); Nd_GetNode(s_hCam, "LUTValue", &hValue); Nd_GetNode(s_hCam, "LUTEnable", &hEnable);
for (int64_t i=0; i<4096; i++) { // 1.Set the input level of LUT to 'LUTIndex'. Nd_SetIntValue(s_hCam, hIndex, i); // 2.Set the output level of LUT to 'LUTValue' Nd_SetIntValue(s_hCam, hValue, 4095 - i); // invert }
// 3.Set the activation of LUT function by 'LUTEnable' Nd_SetBoolValue(s_hCam, hEnable, true);

詳細は[TeliCamAPI Library manual]の[INode functions], [IInteger node functions]を参照して ください。

Register access API

IIDC2 レジスタに直接アクセスして LUT を制御します。

API 名		説明	
Cam_ReadReg Cam_WriteReg		値を読み出します。	
		値を書き込みます。	

◆LUT

1.LUT の出力レベルを設定します。

LUTValueAll レジスタの Value[0]~Value[4095]フィールドに書き込みます。

Value レジスタのインデックスは LUT の入力レベルを意味します。

2.LUT を有効にします。

LUTEnable レジスタの Value フィールドに書き込みます。

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小値/最大値

LUTIndex/LUTValue	值	
最小値	0	
最大値	4095	

<u>UserSetControl</u>

カメラに実装されている不揮発性メモリに、ユーザー設定を Save することができます。不揮発性メモリ にはユーザーメモリとして 15 のチャンネルが用意されています。よく使用する設定を Save しておき、使 用時に Load することで各々の設定をする手間を省くことができます。 Load と Save が適用されるユーザ ー設定は下記のとおりです。

Category	Register	Category	Register
ImageFormatControl	ImageFormatSelector	DigitallOControl	UserOutputValue
	Width		LineSelector
	Height		LineSource
	OffsetX		AntiGlitch
	OffsetY		AntiChattering
	Binning	CounterAndTimerControl	TimerTriggerSource
	Decimation		TimerDuration
	Reverse		TimerDelay
	PixelFormat	AnalogControl	Gain
	TestPattern		GainControl
AcquisitionControl	AcquisitionFrameRateEnable		BlackLevel
	AcquisitionFrameRate		Gamma
	AcquisitionFrameIntervalControl		BalanceRatio
	AcquisitionFrameInterval	LUTControl	LUTEnable
	HighFrameRateMode	EventControl	EventNotification
	TriggerMode	DPCControl	DPCEnable(*)
	TriggerSequence		DPCNumber (*)
	TriggerSource		DPCEntryX(*)
	TriggerAdditionalParameter		DPCEntryY(*)
	TriggerDelay	SequentialShutterControl	SequentialShutterEnable(*)
	ShortExpsureMode		SequentialShutterTerminateAt(*)
	ExposureTime		SequentialShutterEntry(*)
	ExposureControl	VendorUniqueControl	FrameSynchronization
DigitallOControl	LineMode		LEDIndicatorLuminance
	Linelnverter		

表 UserSet 適用レジスタ

(※)保存される Entry は 1 チャンネル分で、Entry は全てのチャンネルで共有されます。

この表は白黒/カラーすべての機能を記載しています。「機能一覧」も参照してください。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
UserSetSelector	IEnumeration	4	R/W	ユーザー設定チャンネルを選択します。
UserSetLoad	ICommand	4	W	ユーザー設定の Load を実行します。
UserSetSave	ICommand	4	W	不揮発性メモリにユーザー設定の Save を実行します。
UserSetQuickSave	ICommand	4	W	揮発性メモリにユーザー設定の Save を実行します。
UserSetDefault	IEnumeration	4	R/W	カメラ起動時に Load するユーザー設定チャンネルを選択します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
UserSetSelector	Implemented	0x208060	[31]	R	この機能が有効かどうかを返します。
			4	D	[0] : Default
	l ist∩fFlements	0,202060			[1]:UserSet1
		0,200000	Ŧ		
					[15] : UserSet15
	Value	0x20807C	4	R/W	ユーザー設定チャンネルを選択します。
UserSetCommand	Implemented	0x208080	[31]	R	この機能が有効かどうかを返します。
	ListOfElements				[0] : Done
		0x20808C	4	R	[8] : Load
					[9] : Save
					[120] : QuickSave
	Value	0x20809C	4	R/W	ユーザー設定コマンドを選択します。
UserSetDefault	Implemented	0x2080A0	[31]	R	この機能が有効かどうかを返します。
					[0] : Default
		0x2080AC	Λ	R	[1]:UserSet1
	LISCOTLIETTIETTIS		4		
					[15] : UserSet15
		0,2080PC	1	R/W	カメラ起動時に Load するユーザー設定チャンネルを
	value		4		選択します。

Camera feature API

専用の API を使用して UserSetControl を制御します。

API名	説明			
ExecuteCamUserSetLoad	UserSetLoad を実行します。			
ExecuteCamUserSetSave	UserSetSave を実行します。			
ExecuteCamUserSetSaveAndSetDefault	UserSetDefault を実行します。			

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して UserSetControl を制御します。

♦UserSetLoad/UserSetSave/UserSetQuickSave

1.UserSetSelector によってユーザー設定チャンネルを選択します。

設定値は Enumeration 型で下記のとおりです。

Integer	String	説明	セーブ	ロード
0	Default	工場出荷設定と同じ	-	0
1~15	UserSet1~15	ユーザー設定チャンネル 1~15 出荷時に下記機能調整済み ・欠陥画素座標設定、DPC 機能 ON	0	0

2.UserSetLoad, UserSetSave, UserSetQuickSave を実行します。

UserSetLoad を実行することで、UserSetSelector レジスタにて選択されているチャンネルから ユーザー設定をLoad します。

UserSetSave または UserSetQuickSave を実行することで、UserSetSelector レジスタに 選択されているチャンネルにユーザー設定をSave します。

UserSetSave 実行後、Nd_GetCmdlsDone で UserSetSave の完了を待ちます。

// GenlCam node handle
CAM_NODE_HANDLE hSelector = NULL;
CAM_NODE_HANDLE hSave = NULL;
// Retrieve GenlCam node.
Nd_GetNode(s_hCam, "UserSetSelector", &hSelector);
Nd_GetNode(s_hCam, "UserSetSave", &hSave);
// 1. Select a channel of user setting by UserSetSelector .
UINTO4_T dat = 1,// UserSet I
nd_SelEnumintvalue(s_noam, nSelector, dat/,
// 2. Execute UserSetSave
Nd_CmdExecute(s_hCam, hSave);
bool8_t bDone;
Nd_GetCmdlsDone(s_hCam, hSave, &bDone);
if (bDone == true)
Dreak,
Sleep(U),

♦UserSetDefault

1.UserSetDefault によってカメラ起動時に Load するユーザー設定チャンネルを選択します。 設定値は Enumeration 型で下記のとおりです。

Integer	String	説明			
0	Default	工場出荷設定と同じ			
1~15	UserSet1~15	ユーザー設定チャンネル 1~15			

// GenlCam node handle CAM_NODE_HANDLE hSelector = NULL;
// Retrieve GenlCam node. Nd_GetNode(s_hCam, "UserSetDefault", &hSelector);
// 1.Select a channel of user setting when camera powers up by 'UserSetDefault' . uint64_t dat = 1; // UserSet1 Nd_SetEnumIntValue(s_hCam, hSelector, dat);

詳細は[TeliCamAPI Library manual]の[INode functions], [IEnumeration node functions], [ICommand node functions]を参照してください。

Register access API

IIDC2 レジスタに直接アクセスして UserSetControl を制御します。

	API 名	説明			
	Cam_ReadReg	値を読み出します。			
Cam_WriteReg		値を書き込みます。			

♦UserSetLoad/UserSetSave/UserSetQuickSave

1.UserSetSelector によってユーザー設定チャンネルを選択します。

UserSetSelector レジスタの Value フィールドに書き込みます。

2.UserSetLoad, UserSetSave, UserSetQuickSave を実行します。

UserSetLoad を実行するために、UserSetCommand レジスタの Value フィールドに[8]を書き込みます。

UserSetSave を実行するために、UserSetCommand レジスタの Value フィールドに[9]を書き 込みます。

UserSetQuickSave を実行するために、UserSetCommand レジスタの Value フィールドに [120]を書き込みます

UserSetSave 実行後、UserSetCommand が Done (= 0) になるまで待ちます。

uint32_t dat;

// 1.Select a channel of user setting by 'UserSetSelector' .
dat = 1; // UserSet1
Cam_WriteReg(s_hCam, 0x20807C, 1, &dat);
// 2. Execute UserSetSave
dat = 9: // UserSetSave
Cam_WriteReg(s_hCam, 0x20809C, 1, &dat);
while(1) {
 Cam_ReadReg(s_hCam, 0x20809C, 1, &dat);
 if(dat == 0)
 break;
 Sleep(0);
}

♦UserSetDefault

UserSetDefault によってカメラ起動時に Load するユーザー設定チャンネルを選択します。

// 1.Select a channel of user setting when camera powers up uint32_t dat = 1; // UserSet1 Cam_WriteReg(s_hCam, 0x2080BC, 1, &dat);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

EventControl

USB3 Vision の Event Packet 機能を用いて、トリガ受付状態などを取得することができます。

- FrameTrigger
 トリガ受付
- FrameTriggerError : トリガエラー
- FrameTriggerWait : トリガ受付待ち開始
- FrameTransferStart : 映像転送開始
- FrameTransferEnd : 映像転送終了
- ExposureStart : 露光開始
- ExposureEnd : 露光終了
- TimerOStart : TimerO 開始
- TimerOEnd : TimerO 終了

イベントの発行タイミングは下図のようになります。

(2) Frame I riggerError	:トリカエラー
(3) FrameTriggerWait	:トリガ受付待ち開始
(4) FrameTransferStart	:映像転送開始
(5) FrameTransferEnd	:映像転送終了
(6) ExposureStart	:露光開始
(7) ExposureEnd	:露光終了
(8) TimerOStart	:TimerO開始
(9) TimerOEnd	:TimerO終了

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
EventSelector	lEnumeration	4	R/W	イベント通知の種類を選択します。
EventNotification	Enumeration	4	R/W	イベント通知の有効/無効を選択します。

イベント名	Event ID	Event Data	Length Byte / [bit]	説明
EventFrameTrigger	0x8020	EventFrameTriggerTimestamp	8	イベント発生時のタイムスタンプを返します。
EventFrameTriggeError	0x8021	EventFrameTriggerErrorTimestamp	8	イベント発生時のタイムスタンプを返します。
EventFrameTriggeWait	0x8022	EventFrameTriggerWaitTimestamp	8	イベント発生時のタイムスタンプを返します。
EventFrameTransferStart	0x8030	EventFrameTransferStartTimestamp	8	イベント発生時のタイムスタンプを返します。
EventFrameTransferEnd	0x8031	EventFrameTransferEndTimestamp	8	イベント発生時のタイムスタンプを返します。
EventExposureStart	0x8040	EventExposureStartTimestamp	8	イベント発生時のタイムスタンプを返します。
EventExposureEnd	0x8041	EventExposureEndTimestamp	8	イベント発生時のタイムスタンプを返します。
EventTimerOStart	0x9000	EventTimerOStartTimestamp	8	イベント発生時のタイムスタンプを返します。
EventTimer0End	0x9100	EventTimer0EndTimestamp	8	イベント発生時のタイムスタンプを返します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
EventNotificationOfFrame	Implemented	0x21F220	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x21F22C	4	R	[0] : FrameTrigger
					[1] : FrameTriggerError
					[2] : FrameTriggerWait
					[3] : FrameStart
					[4] : FrameEnd
					[16] : FrameTransferStart
					[17] : FrameTransferEnd
	Value	0x21F230	4	R/W	Fame イベント通知を有効にします。
EventNotificationOfExposure	Implemented	0x21F240	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x21F24C	4	R	[0] : ExposureStart
					[1]:ExposureEnd
	Value	0x21F250	4	R/W	UserSet コマンドを設定します。
EventNotificationOfTimerStart	Implemented	0x21F380	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x21F38C	4	R	[0] : TimerOStart
	Value	0x21F390	4	R/W	TimerO 開始イベント通知を有効にします。
EventNotificationOfTimerEnd	Implemented	0x21F3A0	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x21F3AC	4	R	[0] : TimerOEnd
	Value	0x21F3B0	4	R/W	TimerO 終了イベント通知を有効にします。

Camera feature API

専用の API を使用して Event 機能を制御します。

API	名	説明
High-level API functions	Evt_OpenSimple	イベントインターフェースをオープンします。
	Evt_Activate	指定したカメライベントを有効にします。
	Evt_Deactivate	指定したカメライベントを無効にします。
Low-level API functions	Evt_Open	イベントインターフェースをオープンします。
	Evt_CreateRequest	イベントリクエストを作成します。
	Evt_ReleaseRequest	イベントリクエストを解放します。
	Evt_EnqueueRequest	イベントリクエストをイベント待機キューに投入します。
	Evt_DequeueRequest	イベント受信キューからイベントリクエストを一つ取り出します。
	Evt_FlushWaitQueue	すべての受信処理を停止し、待機キュー内のすべてのイベントリク
		エストを受信完了キューに移動させます。
Common functions	Evt_Close	イベントインターフェースをクローズします。

TeliCamSDK のインストールフォルダにある[TeliCamAPI Library manual]の

[Camera event notification functions]と[GrabEvent]のサンプルコードを参照してください。

GenlCam function API

専用の API を使用して Event 機能を制御してください。

Register access API

専用の API を使用して Event 機能を制御してください。

FrameSynchronization

カメラのフレーム同期方式を選択します。

- 1. Off : フリーラン動作(内部同期)
- 2. Bus : USB バスのクロックを活用し、同バス上のカメラを同期させます。(バス同期)

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
FrameSynchronization	IEnumeration	4	R/W	フレーム同期方式を選択します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
FrameSynchronization	Implemented	0x21F020	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x21F02C	16	R	[0] : Off
					[1] : Bus
	Value	0x21F03C	4	R/W	フレーム同期方式を選択します。

GenlCam function API

専用の API を使用して FrameSynchronization を制御します。

♦FrameSynchronization

フレーム同期方式を選択します。

設定値は Enumeration 型で下記のとおりです。

Integer	String	説明
0	Off	内部同期
1	Bus	バス同期

詳細は[TeliCamAPI Library manual]の[INode functions], [IEnumeration node functions]を参照してください。

Register access API

IDC2 レジスタに直接アクセスして FrameSynchronization を制御します。

API 名	説明		
Cam_ReadReg	値を読み出します。		
Cam_WriteReg	値を書き込みます。		

♦FrameSynchronization

FrameSynchronization レジスタの Value フィールドに書き込みます。

// Select a frame synchronization method uint32_t dat = 1; Cam_WriteReg(s_hCam, 0x21F03C, 1, &dat); // Bus Sync mode

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

LEDIndicatorLuminance

LED インジケータの輝度を設定します。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
LEDIndicatorLuminance	IFloat	4	R/W	LEDの輝度を設定します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
LEDIndicatorLuminance	Implemented	0x21F100	[31]	R	この機能が有効かどうかを返します。
	Mult	0x21F10C	4	R	後前時 [9/] = Datuse (Multer / Dia)
	Div	0x21F110	4	R	#8xy110 [76] - NaW * (IVIUIL / DIV)
	Min	0x21F114	4	R	LED の輝度最小値を返します。
	Max	0x21F118	4	R	LED の輝度最大値を返します。
	Value	0x21F11C	4	R/W	LED の輝度を設定します。

GenlCam function API

GeniCam API を使用して LED indicator luminance を制御します。

◆LEDIndicatorLuminance

LED indicator luminance を制御するには IFloat インターフェースを使用します。

// GenlCam node handle CAM_NODE_HANDLE hNode = NULL; // luminance = 50[%] // actual value (4/7)*100 = 57.14[%] float64_t dLuminance = 50.0;

// Retrieve GenlCam node. Nd_GetNode(s_hCam, "LEDIndicatorLuminance", &hNode);

// Set LED indicator luminance Value Nd_SetFloatValue(s_hCam, hNode, dLuminance);

詳細は[TeliCamAPI Library manual]の[INode functions], [IFloat node functions], [IFloat node functions]を参照してください。

Register access API

IDC2 レジスタに直接アクセスして LED indicator luminance を制御します。

API 名	説明		
Cam_ReadReg	値を読み出します。		
Cam_WriteReg	値を書き込みます。		

◆LEDIndicatorLuminance

LEDIndicatorLuminance レジスタの Value'フィールドに書き込みます。

// luminance = 50[%] (Raw value = 4) // actual value (4/7)*100 = 57.14[%] uint32_t uiLuminanceRaw = 4; // Set LED indicator luminance Value Cam_WriteReg(s_hCam, 0x21F11C, 1, &uiLuminanceRaw);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小值 / 最大值 Value

LEDIndicatorLuminance	Raw 值	絶対値(Float)		
最小値	0	0.00 [%]		
最大値	7	100.00 [%]		
初期値	7	100.00 [%]		
式	絶対値 [%] = Raw 値 / 7			

DPCControl

DPC(Defective Pixel Correction:欠陥画素補正)では、イメージセンサの欠陥画素を補正することが出来ます。欠陥画素の座標(X,Y)を指定することにより、指定座標の周囲画素値から演算をおこない、欠陥画素を補正します。

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
DPCEnable	lEnumeration	4	R/W	DPC 機能の ON/OFF を制御します。
DPCNumber	llnteger	4	R/W	補正する欠陥画素数を指定します。
DPCIndex	llnteger	4	R/W	設定する座標値の Index 番号を指定します。
DPCEntryX	lInteger	4	R/W	補正対象画素のX座標を指定します。
DPCEntryY	lInteger	4	R/W	補正対象画素のY座標を指定します。

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
DPCEnable	Implemented	0x21F280	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x21F28C	4	R	[0] : Off
					[1] : On
	Value	0x21F29C	4	R/W	DPC 機能の ON/OFF を制御します。
DPCNumber	Implemented	0x21F2A0	[31]	R	この機能が有効かどうかを返します。
	Value	0x21F2BC	4	R/W	補正する欠陥画素数を指定します。
DPCCoord	Value[0][0]	0x400000	4	R/W	欠陥画素の最初のX 座標を設定します。
	Value[0][1]	0x400004	4	R/W	欠陥画素の最初のY座標を設定します。
	Value[1][0]	0x400008	4	R/W	欠陥画素の2番目のX座標を設定します。
	Value[1][1]	0x40000C	4	R/W	欠陥画素の2番目のY座標を設定します。
	Value[255][0]	0x4007F8	4	R/W	欠陥画素の 255 番目の X 座標を設定します。
	Value[255][1]	0x4007FC	4	R/W	欠陥画素の 255 番目の Y 座標を設定します。

GenlCam function API

GeniCam API を使用して DPC を制御します。

◆DPC

1.DPCIndex によって座標値の Index 番号を、DPCEntryX によって補正対象画素の X 座標を、 DPCEntryY によって補正対象画素の Y 座標をそれぞれ設定します。

2.DPCNumber によって補正する欠陥画素数を設定します。

3.DPCEnable によって DPC 機能の On/Off を設定します。

設定値は Enumeration 型で下記のとおりです。

Integer	String
0	Off
1	On

// GenlCam node handle CAM_NODE_HANDLE hIndex = NULL; CAM_NODE_HANDLE hEntryX = NULL; CAM_NODE_HANDLE hEntryY = NULL; CAM_NODE_HANDLE hNumber = NULL; CAM_NODE_HANDLE hEnable = NULL;
// Retrieve GenlCam node. Nd_GetNode(s_hCam, "DPCIndex", &hIndex); Nd_GetNode(s_hCam, "DPCEntryX", &hEntryX); Nd_GetNode(s_hCam, "DPCEntryY", &hEntryY); Nd_GetNode(s_hCam, "DPCNumber", &hNumber); Nd_GetNode(s_hCam, "DPCEnable", &hEnable);
int64_t entry[2][2] = {{100,200},{150,300}}; // {x.y} int64_t number;
for(number=0; number<2; number++)
// 1.Set the coordinates of defective pixels by 'DPCIndex', 'DPCEntryX' and 'DPCEntryY'
Nd_SetIntValue(s_hCam, hIndex, number); // 0 origin Nd_SetIntValue(s_hCam, hEntryX, entry[number][0]); Nd_SetIntValue(s_hCam, hEntryY, entry[number][1]); }
// 2.Sets the number of pixels to correct to 'DPCNumber'. Nd_SetIntValue(s_hCam, hNumber, number); // 2 pixels are to be corrected.
// 3.Sets the activation of DPC function by 'DPCEnable'. Nd_SetEnumStrValue(s_hCam, hEnable, "On");

詳細は[TeliCamAPI Library manual]の[INode functions], [IInteger node functions], [IEnumeration node functions]を参照してください。

Register access API

IIDC2 レジスタに直接アクセスして DPC を制御します。

API 名	説明
Cam_ReadReg	値を読み出します。
Cam_WriteReg	値を書き込みます。

◆DPC

1.DPC 対象画素の座標を設定します。

DPCCoord レジスタの Value[index][0], Value[index][1]フィールドに書き込みます。

Value レジスタの第1インデックスは座標値の Index 番号を示します。

第2インデックスの[O], [1]はそれぞれ X, Y座標に対応します。

2.補正する欠陥画素数を設定します。

DPCNumber レジスタの Value フィールドに書き込みます。

3.DPC 機能を有効にします。

DPCEnable レジスタの Value フィールドに[1]を書き込みます。

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。.

◆最小値/最大値

	DPCNumber	DPCIndex
最小値	0	0
最大値	256	255

	DPCEntryX	DPCEntryY
最小値	0	0
最大値	WidthMax-1	HeightMax-1

<u>Chunk</u>

Chunk データとは画像データ毎に付加されたタグ情報を指します。

このタグ情報はアプリケーションがデータのペイロードを解析して様々な要素を抽出・識別できるように するものです。

有効化された Chunk データの内容が多くなると、そのフレーム長は長くなります。

Chunk データの構造

● GenlCam ノード

名称	Interface	Length Byte / [bit]	Access	説明
ChunkModeActive	IBoolean	4	R/W	Chunk 機能を有効にします。
ChunkSelector	lEnumeration	4	R/W	有効にする Chunk データを選択します。
ChunkEnable	lBoolean	4	R/W	画像データのペイロードに Chunk データを付加しま
				す。
ChunkUserAreaLength	llnteger	4	R	ChunkUserAreaTable の長さを示します。
ChunkUserAreaTable	lString	256	R/W	ユーザー文字列を設定します。(最大:256byte)
ChunkFramelD	llnteger	8	R	Chunk データに付加された Block ID を返します。
ChunkExposureTime	IFloat	4	R	Chunkデータに付加された
				ExposureTimeの値を返します。
ChunkGain	IFloat	4	R	Chunk データに付加された Gain の値を返します。
ChunkWhiteBalanceR	IFloat	4	R	Chunkデータに付加された
				WhiteBalanceR gain の値を返します。
ChunkWhiteBalanceB	IFloat	4	R	Chunkデータに付加された
				WhiteBalanceB gain の値を返します。
ChunkLineStatusAll	llnteger	4	R	Chunkデータに付加された
				LineStatusAll を返します。
ChunkFrameBurstTriggerCount	llnteger	4	R	Chunkデータに付加された
				FrameBurstTriggerCountの値を返します。
ChunkSequentialShutterNumber	llnteger	4	R	Chunk データに付加された
				SequentialShutterNumberの値を返します。
ChunkSequentialShutterElement	Integer	4	R	Chunkデータに付加された
				SequentialShutterElementの値を返します。

レジス夕名	Field	Address	Length Byte / [bit]	Access	説明
ChunkModeActive	Implemented	0x21D020	[31]	R	この機能が有効かどうかを返します。
	BitWritable	0x21D02C	4	R	[O]:Off
					[1]:On
	Value	0x21D030	4	R/W	Chunk 機能を有効にします。
ChunkEnableOfVendorSpecific	Implemented	0x21D040	[31]	R	この機能が有効かどうかを返します。
	BitWritable	0x21D04C	4	R	[0] : BlockID
					[8] : FrameBurstTriggerCount
					[9] : SequentialShutterNumber
					[10] : SequentialShutterElement
					[24] : UserArea
	Value	0x21D050	4	R/W	Chunk データを有効にします。
ChunkEnableOfCat4	Implemented	0x21D0E0	[31]	R	この機能が有効かどうかを返します。
	BitWritable	0x21D0EC	4	R	[0] : ExposureTime
					[2] : Gain
	Value	0x21D0F0	4	R/W	Chunk データを有効にします。
ChunkEnableOfCat5	Implemented	0x21D100	[31]	R	この機能が有効かどうかを返します。
	BitWritable	0x21D10C	4	R	[2] : WhiteBalaceR
					[3] : WhiteBalaceB
	Value	0x21D110	4	R/W	Chunk データを有効にします。
ChunkEnableOfCat9	Implemented	0x21D180	[31]	R	この機能が有効かどうかを返します。
	BitWritable	0x21D18C	4	R	[2] : LineStatusAll
	Value	0x21D190	4	R/W	Chunk データを有効にします。
ChunkUserArea	Implemented	0x21D7F0	[31]	R	この機能が有効かどうかを返します。
	NumberOf	0x21D7FC	[30:0]	R	ChunkUserArea の長さ(byte 単位)を返します。
	Elements				
	Value[0]	0x21D800	length	R/W	ChunkUserAreaのASCII文字列を設定します。
	Value[last]	0x21D800		R/W	ChunkUserArea のASCII 文字列を設定します。
		+NumberOf			
		Elements			
		-4			

Camera feature API

専用の API を使用して Event 機能を制御します。

API 名	説明
GetCamChunkModeActive	カメラのチャンクデータ出力モード(有効/無効)を取得します。
SetCamChunkModeActive	カメラのチャンクデータ出力モード(有効/無効)を設定します。

詳細は[TeliCamAPI Library manual]の[Controlling camera feature functions]を参照してください。

GenlCam function API

GeniCam API を使用して Chunk を制御します。

♦Chunk

1.映像ストリームをクローズします。

2.ChunkModeActive によって Chunk 機能を有効にします。

3. ChunkSelector と ChunkEnable によって Chunk データを有効にします。

ほとんどの Chunk データは出力に固定されています。

4.ChunkUserAreaTableによってユーザー文字列を設定します。(任意)

5.映像ストリームをオープンします。

6.映像ストリームをキャプチャします。

TeliCamAPI はコマンド処理やバッファ処理などのストリーミング機能を提供し映像ストリーム を簡単にキャプチャします。

TeliCamSDK インストールフォルダ内の[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]のサンプルコードを参照してください。

7.Chunk データを抽出します。

7-1.Chunk_AttachedBuffer でメモリを確保します。

7-2.Chunk データを読み出します。

// GenlCam node handle
CAM_NODE_HANDLE hMode = NULL;
CAM_NODE_HANDLE hSelector = NULL;
CAM_NODE_HANDLE hEnable = NULL;
CAM_NODE_HANDLE
CAM_NODE_HANDLE
CAM_NODE_HANDLE
// Retrieve GenlCam node.
Nd_GetNode(s_hCam, "ChunkModeActive", &hMode);
Nd_GetNode(s_hCam, "ChunkSelector", &hSelector);
Nd_GetNode(s_hCam, "ChunkEnable", &hEnable);
Nd_GetNode(s_hCam, "ChunkFramelD", &hFramelD);
Nd_GetNode(s_hCam, "ChunkExposureTime", &hExposureTime);
Nd_GetNode(s_hCam, ChunkUserArea I able , &hUserArea I able);
// 2.Activate ChunkModeActive
Nd_SetBoolValue(s_hCam, hMode, true);
//3 Enable ChunkSelector
Nd SetEnumStrValue(s hCam, hSelector, "ExposureTime");
Nd SetBoolValue(s hCam, hEnable, true);
Nd SetEnumStrValue(s hCam, hSelector, "UserArea");
Nd_SetBoolValue(s_hCam, hEnable, true);

143 / 157
/ 4.Set the user string Nd SetStrValue(s hCam, hUserAreaTable, "Test"); // 5.6.0pen and capture image Strm ReadCurrentImage(hStrm, pvPayloadBuf, &uiPyldSize, &sImageInfo); // 7-1. Attach Buffer Chunk_AttachBuffer(s_hStrm, pvPayloadBuf, PyldSize) // 7-2,Get FramelD of Chunk data, int64 t fid= 0; Nd_GetIntValue(s_hCam, hFrameID, &fid); // 7-2.Get Exposure Time of Chunk data. float64 t exptime = 0; Nd GetFloatValue(s hCam, hExposureTime, &exptime); // 7-2,Get User Area data of Chunk data, char userarea[256]; Uint32_t uiSize = 256; Nd_GetStrValue(s_hCam, hUserAreaTable, &userarea, &uiSize);

詳細は[TeliCamAPI Library manual]の[INode functions], [IBoolean functions], [IInteger node functions], [IEnumeration node functions]を参照してください。

Register access API

IDC2 レジスタに直接アクセスして Chunk を制御します。

API 名	説明		
Cam_ReadReg	値を読み出します。		
Cam_WriteReg	値を書き込みます。		

Chunk

1.映像ストリームをクローズします。

2.Chunk 機能を有効にします。

ChunkModeActive レジスタの Value フィールドに書き込みます。

3.Chunk データを有効にします。

ChunkEnableOfVendorSpecific, ChunkEnableOfCat4, ChunkEnableOfCat5,

ChunkEnableOfCat9 レジスタの Value フィールドに書き込みます。

4.ユーザー文字列を設定します。(任意)

ChunkUserArea レジスタの Value[0]~Value[last]フィールドに書き込みます。

5.映像ストリームをオープンします。

6.映像ストリームをキャプチャします。

TeliCamAPI はコマンド処理やバッファ処理などのストリーミング機能を提供し映像ストリーム を簡単にキャプチャします。

TeliCamSDK インストールフォルダ内の[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]のサンプルコードを参照してください。

7.GenlCam API を使用して Chunk データを抽出します。

// 2.Activate ChunkModeActive int32_t active = 1; Cam_WriteReg(s_hCam, 0x21D030,1, &active); // 3.Enable Chunk int32_t cat4 = 5; Cam_WriteReg(s_hCam, 0x21D0F0,1, &cat4); // 5.6.0pen and capture image Strm_ReadCurrentImage(hStrm, pvPayloadBuf, &uiPyldSize, &sImageInfo); // 7-1. Attach Buffer Chunk_AttachBuffer(s_hStrm, pvPayloadBuf, PyldSize) // 7-2.Get FramelD of Chunk data. int64_t fid= 0; Nd_GetIntValue(s_hCam, hFID, &fid); // 7-2.Get Exposure Time of Chunk data. float64_t exptime = 0; Nd_GetFloatValue(s_hCam, hExposureTime, &exptime); // 7-2.Get User Area data of Chunk data. char userarea[256]; uint32_t uiSize = 256; Nd_GetStrValue(s_hCam, hUserAreaTable, &userarea, &uiSize);

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。.

SequentialShutterControl

Sequential Shutter 機能により、あらかじめ登録されている UserSet の設定値を順次適用し、撮影を 行うことができます。なお、短時間露光モード=ON 時は非対応です。

Sequential Shutter

• GenlCam Node

名称	Interface	Length Byte / [bit]	Access	説明
SequentialShutterEnable	IEnumeration	4	R/W	Sequential ShutterのON/OFF を制御します。
SequentialShutterTerminateAt	llnteger	4	R/W	Sequence の繰り返しを行うインデックス数を設定します。
SequentialShutterIndex	llnteger	4	R/W	登録を行う Sequence 番号を設定します。
SequentialShutterEntry	llnteger	4	R/W	Sequence に登録する UserSet 番号を設定します。

● IIDC2 レジスタ

レジスタ名	Field	Address	Length Byte / [bit]	Access	説明
SequentialShutterEnable	Implemented	0x21F300	[31]	R	この機能が有効かどうかを返します。
	ListOfElements	0x21F30C	4	R	[0] : Off
					[1] : On
	Value	0x21F31C	4	R/W	Sequential ShutterのON/OFFを制
					御します。
SequentialShutterTerminateAt	Implemented	0x21F320	[31]	R	この機能が有効かどうかを返します。
	Value	0x21F33C	4	R/W	Sequenceの繰り返しを行うインデッ
					クス数を設定します。
SequentialShutterSequenceTable	Value[0]	0x500040	4	R/W	最初の Sequence に登録する
					UserSet 番号を設定します。
	Value[1]	0x500044	4	R/W	2番目の Sequence に登録する
					UserSet 番号を設定します。
	Value[15]	0x500078	4	R/W	16番目の Sequence に登録する
					UserSet 番号を設定します。

• Control with TeliCamSDK

Camera feature API

専用の API を使用して SequentialShutter を制御します。

API 名	説明
GetCamSequentialShutterEnable	SequentialShutterGet activation status
SetCamSequentialShutterEnable	SequentialShutter を有効に設定します。
GetCamSequentialShutterTerminateAtMinMax	SequentialShutterTerminateAtの最小値と最大値を取得します。
GetCamSequentialShutterTerminateAt	SequentialShutterTerminateAtの値を取得します。
SetCamSequentialShutterTerminateAt	SequentialShutterTerminateAt に値を設定します。
GetCamSequentialShutterIndexMinMax	SequentialShutterIndex の最小値と最大値を取得します。
GetCamSequentialShutterEntryMinMax	SequentialShutterEntryの最小値と最大値を取得します。
GetCamSequentialShutterEntry	SequentialShutterEntryの値を取得します。
SetCamSequentialShutterEntry	SequentialShutterEntry に値を設定します。

GenlCam function API

GeniCam API を使用して Sequential Shutter を制御します。

SequentialShutter

- 1.カメラにパラメータを設定し、UserSetに保存します。必要に応じてこれを繰り返します。
- 2.SequentialShutterIndex によって登録を行う Sequence 番号を設定し、 SequentialShutterEntry によって Sequence に登録する UserSet 番号を設定します。 必要に応じてこれを繰り返します。
- 3.SequentialShutterTerminateAt によって Sequence の繰り返しを行うインデックス数を設定します。
- 4.SequentialShutterEnable によって Sequential ShutterのOn/Off を設定します。 設定値は Enumeration 型で下記のとおりです。

Integer	String	
0	Off	
1	On	

5.映像ストリームをキャプチャします。

画像のキャプチャ開始/停止する方法は AcquisitionControl と同じです。.

TeliCamSDK インストールフォルダの[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]サンプルコードを参照してください。

// 1.Set the camera parameters and save them to UserSet. // GenlCam node handle CAM_NODE_HANDLE hIndex = NULL; CAM_NODE_HANDLE hEntry = NULL; CAM_NODE_HANDLE hTerminateAt = NULL; CAM_NODE_HANDLE hEnable = NULL; // Retrieve GenlCam node, Nd_GetNode(s_hCam, "SequentialShutterIndex", &hIndex); Nd_GetNode(s_hCam, "SequentialShutterEntry", &hEntry); Nd_GetNode(s_hCam, "SequentialShutterTerminateAt", &hTerminateAt); Nd_GetNode(s_hCam, "SequentialShutterEnable", &hEnable); int64_t entry[] = {1,4,2}; // Sequence = {UserSet1,UserSet4,UserSet2} int64_t index; for(index=0; index<3; index++) // 2.Set SequentialShutterIndex and SequentialShutterEntry. Nd_SetIntValue(s_hCam, hIndex, index+1); // 1 origin Nd_SetIntValue(s_hCam, hEntry, entry[index]); // 3.Set SequentialShutterTerminateAt. Nd_SetIntValue(s_hCam, hTerminateAt, index); // 3 UserSet will be repeated. // 4.Set the activation of SequentialShutter function by 'SequentialShutterEnable'. Nd_SetEnumStrValue(s_hCam, hEnable, "On");

詳細は[TeliCamAPI Library manual]の[INode functions], [IInteger node functions]を参照して ください。

Register access API

IDC2 レジスタに直接アクセスして Sequential Shutter を制御します。

API 名	説明		
Cam_ReadReg	値を読み出します。		
Cam_WriteReg	値を書き込みます。		

1.カメラにパラメータを設定し、UserSetに保存します。必要に応じてこれを繰り返します。

2.Sequence に登録する UserSet 番号を設定します。

SequentialShutterSequenceTable レジスタの Value[0]~Value[15]Value フィールドに書 き込みます。Value レジスタのインデックスはシーケンスインデックスを意味します。(O origin) 3.Sequence の繰り返しを行うインデックス数を設定します。

SequentialShutterTerminateAt レジスタの Value フィールドに書き込みます。

4.SequentialShutter を有効にします。

SequentialShutterを有効にするにはSequentialShutterEnableのValueフィールドに書き込みます。

5.映像ストリームをキャプチャします。

画像のキャプチャ開始/停止する方法は AcquisitionControl と同じです。

TeliCamSDK インストールフォルダの[TeliCamAPI Library manual]の[Camera streaming functions]と[GrabStreamSimple]サンプルコードを参照してください。

```
// 1.Set the camera parameters and save them to UserSet.
...
uint64_t addr = 0x500040:
uint32_t entry[] = {1,4,2}; // Sequence =
{UserSet1,UserSet4,UserSet2}
uint32_t index, dat:
for(index=0; index<3; index++,addr+=4)
{
    // 2.Set SequentialShutterIndex and SequentialShutterEntry.
    Cam_WriteReg(s_hCam, addr, 1, &entry[index]);
}
// 3.Set SequentialShutterTerminateAt.
Cam_WriteReg(s_hCam, 0x21F33C, 1, &index); // 3 UserSet will be
repeated.
// 4.Set the activation of SequentialShutter function.
dat = 1;
Cam_WriteReg(s_hCam, 0x21F31C, 1, &dat);</pre>
```

詳細は[TeliCamAPI Library manual]の[Camera functions]を参照してください。

◆最小値/最大値

SequentialShutterIndex	設定値		
最小値(※)	1		
最大値	16		

※ 出荷設定

SequentialShutterEntry	設定値		
最小值(※)	1		
最大値	15		

※ 出荷設定

- 備考
 - ・映像ストリーム出力中は SequentialShutterEnable, SequentialShutterTerminateAt, SequentialShutterIndex, SequentialShutterEntry レジスタ設定変更が無効となります。
 - Sequential Shutter で適用されるレジスタは下表のとおりです。

カテゴリ	レジスタ名	カテゴリ	レジスタ名
ImageFormatControl	OffsetX	AnalogControl	Gain
	OffsetY		BlackLevel
ExposureControl	ExposureTime		Gamma
DigitallOControl	UserOutputValueAll		BalanceRatio
	LineSource	LUTControl	LUTEnable
CounterAndTimerControl	TimerDuration		
	TimerDelay		

SequentialShutter 適用レジスタ

付録

<u>UserSetSaveとUserSetQuickSaveの違い</u>

ー度に複数のカメラの設定値(ROI設定など)を変更したい場合は、ユーザーセット機能が便利です。 アプリケーションは事前または初期段階でカメラの設定値をユーザーセットのメモリ内に保存する必要 があります。

ユーザーセットは UserSetSave によって不揮発性フラッシュメモリに格納されます。

書込む前に不揮発性フラッシュメモリを消去する必要があるため、UserSetSave の実行には約700m sの時間を要します。複数の異なる設定の切り替えを実行する場合、UserSetSave の処理時間は避けられ ません。

ユーザーセットは UserSetQuickSave によって FPGA 内部の RAM に格納されます。 UserSetQuickSave の実行には 100u s 以下の時間を要します。

これにより UserSetSave の処理時間を大幅に短縮することができます。

必要に応じて不揮発性フラッシュメモリにユーザーセットを保存することも可能です。

MultiFrameとBulk モード動作の違い

本項では、AcquisitionModeのMultiFrame動作と、TriggerSequenceのBulkモード動作の違いにつ いて説明します。

-MultiFrame は、転送するフレーム枚数を AcquisitionFrameCount レジスタにより設定します。 -Bulk モードは、露光するフレーム枚数を Trigger Additional Parameter レジスタにより設定します。

-MultiFrame 動作(ノーマルシャッタモード:TriggerMode = Off)

カメラは AcquisitionFrameCount で設定された枚数のフレームを転送します。

AcquisitionFrameCount

-MultiFrame 動作(ランダムトリガシャッタモード: TriggerMode = On, TriggerSequence = O or 1) カメラは AcquisitionFrameCount で設定された枚数のフレームを転送します。 AcquisitionFrameCount の回数分のトリガ入力が必要です。

-Bulk モード動作(ランダムトリガシャッタモード:TriggerMode = On, TriggerSequence = 6)

● 備考

Bulk モード設定時は、通常、AcquisitionMode を Continuous に設定してください。

AcquisitionMode を MultiFrame 設定にすることもできますが、その場合、フレーム数は AcquisitionFrameCount に制限されます。

155 / 157 Copyright © 2023 - 2024 Toshiba Teli Corporation, All rights reserved.

保証規定

●無償保証期間

保証期間はお客様お買い上げ後36ヶ月です。ただし、お買い上げ日が不明な場合、弊社出荷日から判断 させていただきます。

●無償保証対象外範囲

下記の場合の故障・損傷・損失は無償保証の対象外とさせていただきます。

- 1. 消耗部品の自然消耗、磨耗、劣化した場合
- 2. 取扱説明書記載の使用方法や使用条件、または注意に反したお取扱による場合
- 3. 改造・調整や部品交換による場合。(本体ケースの開封及び改造など)
- 4. 構成品に含まれる付属品または弊社指定オプション品を使用していなかった場合
- 5. お客様のお手元に渡った後の輸送、移動時の落下等お取り扱いの不備、腐食性のある環境・日光・火・ 砂・土・熱・湿気への放置、不適当な収納方法による場合
- 6. 火災・地震·水害・落雷・その他の天災、公害や漏電、異常電圧、過度な物理的圧力、盗難・その他の事故による場合
- 7. 相互接続に対する推奨のない製品へ接続した場合
- 8. 正しくない電源に接続した場合
- 9. 偽造製品・弊社のシリアル番号のない製品・シリアル番号が変造、汚損、削除された製品

10.無償保証期間満了後に起こったすべての欠陥

修理

●修理方法

修理等の保守、サービスの取り扱いは原則として弊社工場返品修理扱いとさせていただきます。 場合によっては、代替品または同等機能製品への交換対応となります。

●修理依頼方法

修理ご依頼の際は弊社ホームページより「故障状況調査書」をダウンロードいただき、必要事項をご記入のうえ、弊社製品単品とあわせてご依頼ください。

故障修理依頼

https://www.toshiba-teli.co.jp/support/failure-situation.htm

なお、修理ご依頼の際には、以下の注意事項をご確認いただきますようお願いいたします。

- 1. お客様装置に組み込まれた状態での修理は受付けておりませんので、弊社製品構成外の物品が添付さ れている場合は、お客様にて取り外しを行い発送ください。
- 2. お客様添付の機番,管理番号,識別シールなどの情報は、ご返却はできませんので、お客様にて取り 外しや、メモなど記録をお取り頂けます様、お願い致します。
- カメラ内部に保存されたデータは、修理後保持されませんので、発送前にデータの取り出しをお願い 致します。
- 4. お客様の都合による修理依頼後のキャンセルはお受けしておりません。
- 5. 修理品運送費につきましては、お客様から弊社宛の送料はお客様にご負担いただきます。弊社からお 客様宛の送料は、無償期間内に限り、弊社が負担致します。
- 6. 配送の日時指定について製品の配送日や配送時間帯、配送方法はご指定できませんのでご了承ください。
- 7. 故障要因調査、修理報告書のご依頼は受付けておりません。
- 8. 無償修理期間経過後の修理は、修理可能なものに限り有償にてお受け致します。
- 9. 交換修理後の修理依頼品の所有権は弊社に帰属します。
- 10.修理完了品においても製品の免責事項が適用されます。
- ※ソフトウェアに関するお問い合わせは、弊社ホームページまたは、弊社営業担当までお問い合わせくだ さい。